Abstract: A device and method for the treatment of the vaginal canal by a laser beam, includes a vaginal canal wall retractor, associated to a system for directing the laser beam towards a wall of the vaginal canal.
Abstract: A method for making laser engravings on a web of paper, including prearranging a paper web conveying device; defining a working area along a path of the web; prearranging an emitter of laser pulses; prearranging a movable pointing device, selecting an engraving pattern to be engraved on the web; calculating an instruction file containing pointing instructions; selecting an emission power of the emitter of laser pulses; emitting laser pulses through the emission power; and operating the movable pointing device according to the instruction file.
Type:
Grant
Filed:
May 3, 2013
Date of Patent:
April 24, 2018
Assignees:
EL. EN. S.P.A., HUNKELER.IT S.R.L.
Inventors:
Quirino Sestini, Giovanni Masotti, Carlo Giovannucci
Abstract: A device and method for the treatment of the vaginal canal by a laser beam, includes a vaginal canal wall retractor, associated to a system for directing the laser beam towards a wall of the vaginal canal.
Abstract: The optical device for determining the angular position of a rotating element comprises: a concave mirror (13) integral to one rotating element (7); an electromagnetic radiation emitter (17); at least one electro-optical detector (19R, 19L). The concave mirror, the emitter, and the detector are arranged in such a way that at least a part of the radiation emitted by said emitter is focused by the concave mirror on said at least one detector. The detector produces a signal, which can vary as a function of the position in which the radiation is focused by the mirror on the detector.
Abstract: A method and system for skin tightening comprises a hollow cannula that contains an optical fiber connected to a laser source. The cannula is inserted subcutaneously into a patient so that the end of the fiber is located within the tissue underlying the dermis. The source emits an output pulse that is conveyed by the fiber to the dermis, where the pulse causes collagen destruction and shrinkage within the treatment area. Radiation from the skin surface is detected to prevent non-reversible damage to the dermis, such as skin necrosis and excessive collagen melting. This method of sub-cutaneous laser treatment can also be used to treat striae, or stretch marks.
Abstract: There is described a gas laser comprising a pair of substantially mutually parallel and opposed electrodes (17, 37), between which a volume is defined containing a gas in which said electrodes generate a discharge. At opposed ends of the electrodes, in said volume, mirrors (65) are arranged to define a resonant cavity. The electrodes form an integral part of two portions (5, 7) of a sealed housing (1), containing the gas and in which the mirrors and the electrodes are housed. The two portions (5, 7) forming the housing are electrically connected.
Type:
Grant
Filed:
June 24, 2008
Date of Patent:
January 17, 2012
Assignee:
EL. EN. S.p.A.
Inventors:
Gabriele Clementi, Leonardo Masotti, Alberto Severi
Abstract: A method for laser anti-inflammatory treatment of painful symptomatologies and for tissue regeneration includes generating a pulsed laser beam with laser at a wavelength between 0.75 and 2.5 micrometers. The laser energy is conveyed to a hand unit where the laser beam is preferably defocused. The operator then applies the defocused laser beam the skin of a patient in need of treatment. The average power density per pulse of the defocused laser beam on the skin being 8 W/cm2 per pulse or more.
Abstract: An essentially u-shaped discharge lamp (13) comprises a gaz fill and a pair of electrodes (15) at its ends. The lamp (13) way be comprised in a handpiece (1) for treating a surface by means of electromagnetic radiation.
Abstract: A device and method for the removal of subcutaneous adipose layers with a laser source, optical fiber for conveying the laser ben emitted by the first source and a hollow needle f or guiding the fiber. The fiber ends in the vicinity of the end of the needle. The laser beam is generated with an intensity and a wavelength for liquefying, and maintaining liquid, the adipose cells. The laser beam from the optical fiber irradiates adipose cells in the adipose layer to transform the adipose cells into, and maintain the adipose cells as, a liquid substance.