Patents Assigned to Electroformed Stents, Inc.
  • Patent number: 10660646
    Abstract: A medical flow restrictor that may be used to exclude a saccular aneurysm from the circulatory system. The device, a thin walled, foil-like shell, is compacted for delivery. The invention includes the device, electroforming fabrication methods, delivery assemblies, and methods of placing, and using, the device. A device with an aneurysm lobe and an artery lobe self-aligns its waist at the neck of an aneurysm as the device shell is pressure expanded. Negative pressure is used to collapse both the aneurysm lobe and the artery lobe, captivating the neck of the aneurysm and securing the device. The device works for aneurysms at bifurcations and aneurysms near side-branch arteries. The device, unlike endovascular coiling, excludes the weak neck of the aneurysm from circulation, while leaving the aneurysm relatively empty. Unlike stent-based exclusion, the device does not block perforator arteries. This exclusion device can also limit flow through body lumens or orifices.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: May 26, 2020
    Assignee: Electroformed Stents, Inc.
    Inventor: Richard A. Hines
  • Patent number: 9585670
    Abstract: A medical flow restrictor that may be used to exclude a saccular aneurysm from the circulatory system. The device, a thin walled, foil-like shell, is compacted for delivery. The invention includes the device, electroforming fabrication methods, delivery assemblies, and methods of placing, and using, the device. A device with an aneurysm lobe and an artery lobe self-aligns its waist at the neck of an aneurysm as the device shell is pressure expanded. Negative pressure is used to collapse both the aneurysm lobe and the artery lobe, captivating the neck of the aneurysm and securing the device. The device works for aneurysms at bifurcations and aneurysms near side-branch arteries. The device, unlike endovascular coiling, excludes the weak neck of the aneurysm from circulation, while leaving the aneurysm relatively empty. Unlike stent-based exclusion, the device does not block perforator arteries. This exclusion device can also limit flow through body lumens or orifices.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: March 7, 2017
    Assignee: Electroformed Stents, Inc.
    Inventor: Richard A. Hines
  • Patent number: 8668716
    Abstract: A modification to allow delivery of a two port medical flow restrictor over a guidewire, and a means to mechanically collapse the new device. A thin walled, foil-like shell, is compacted for delivery. The invention includes the device, delivery assemblies, and methods of placing, and using, the device. A device with an aneurysm lobe and an artery lobe self-aligns its waist at the neck of an aneurysm as the device shell is pressure expanded. Mechanical force collapses both the aneurysm lobe and the artery lobe, captivating the neck of the aneurysm and securing the device. The device works for aneurysms at bifurcations and aneurysms near side-branch arteries. The device, unlike endovascular coiling, excludes the weak neck of the aneurysm from circulation, while leaving the aneurysm relatively empty. Unlike stent-based exclusion, the device does not block perforator arteries. This exclusion device can also limit flow through body lumens or orifices.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: March 11, 2014
    Assignee: Electroformed Stents, Inc.
    Inventor: Richard A. Hines
  • Patent number: 8668717
    Abstract: A modification to allow delivery of a two port medical flow restrictor over a guidewire, and a means to mechanically collapse the new device. A thin walled, foil-like shell, is compacted for delivery. The invention includes the device, delivery assemblies, and methods of placing, and using, the device. A device with an aneurysm lobe and an artery lobe self-aligns its waist at the neck of an aneurysm as the device shell is pressure expanded. Mechanical force collapses both the aneurysm lobe and the artery lobe, captivating the neck of the aneurysm and securing the device. The device works for aneurysms at bifurcations and aneurysms near side-branch arteries. The device, unlike endovascular coiling, excludes the weak neck of the aneurysm from circulation, while leaving the aneurysm relatively empty. Unlike stent-based exclusion, the device does not block perforator arteries. This exclusion device can also limit flow through body lumens or orifices.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: March 11, 2014
    Assignee: Electroformed Stents, Inc.
    Inventor: Richard A. Hines
  • Patent number: 8372114
    Abstract: A modification to allow delivery of a two port medical flow restrictor over a guidewire, and a means to mechanically collapse the new device. A thin walled, foil-like shell, is compacted for delivery. The invention includes the device, delivery assemblies, and methods of placing, and using, the device. A device with an aneurysm lobe and an artery lobe self-aligns its waist at the neck of an aneurysm as the device shell is pressure expanded. Mechanical force collapses both the aneurysm lobe and the artery lobe, captivating the neck of the aneurysm and securing the device. The device works for aneurysms at bifurcations and aneurysms near side-branch arteries. The device, unlike endovascular coiling, excludes the weak neck of the aneurysm from circulation, while leaving the aneurysm relatively empty. Unlike stent-based exclusion, the device does not block perforator arteries. This exclusion device can also limit flow through body lumens or orifices.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: February 12, 2013
    Assignee: Electroformed Stents, Inc.
    Inventor: Richard A. Hines
  • Patent number: 6904658
    Abstract: The present invention is directed to a process for forming a drug delivery device by electroplating onto a substrate a porous layer having pores of a controlled size and density and loading a drug into the pores. Preferably the drug delivery device is a gold stent plated with a gold porous layer.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: June 14, 2005
    Assignee: Electroformed Stents, Inc.
    Inventor: Richard A. Hines
  • Patent number: 6274294
    Abstract: The present invention is directed to a novel apparatus for exposing a pattern onto a photoresist-coated substrate cylinder and the process of using the apparatus. The cylindrical photolithography apparatus of the present invention comprises two adjacent cylindrical support rollers between which a portion of a flexible photomask extends in the form of a loop. The photoresist-coated substrate cylinder is received in the loop and a tension device, such as a weight, is engaged with the photomask to pull the photomask into contact with the photoresist-coated substrate cylinder over a substantial portion of the circumference of the substrate cylinder. A drive mechanism pulls the photomask over the surface of the photoresist-coated substrate cylinder thereby causing the substrate cylinder to rotate. Exposure light is provided during movement of the photomask to expose a pattern contained on the photomask onto the photoresist.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: August 14, 2001
    Assignee: Electroformed Stents, Inc.
    Inventor: Richard A. Hines
  • Patent number: 6019784
    Abstract: This invention is directed to an expandable stent useful for implantation into an artery or the like. The stents are made using electroforming techniques in which an electrically-conductive mandrel is coated with a suitable resist material, after which the resist is exposed to an appropriate light pattern and frequency so as to form a stent pattern in the resist. The mandrel is then electroplated with a suitable stent material. The mandrel is etched away once a sufficient layer of stent material is deposited, leaving a completed stent.
    Type: Grant
    Filed: April 3, 1997
    Date of Patent: February 1, 2000
    Assignee: Electroformed Stents, Inc.
    Inventor: Richard A. Hines