Abstract: A server architecture performs concurrent information processing in a server system on a multi-core processor environment. The architecture supports simultaneous processing requests comprising multiple classes of queries and/or executing transactions in an application server and/or database server. Requests, which are made in an asynchronous manner, are structured with hash values to enable similar requests to be grouped together. The similar requests are grouped into a group session. All of the requests in the group session are executed at the same time. Accordingly, similar database inserts can be grouped and executed as a single request. The architecture minimizes thread-switching overhead by exploiting inherent parallelism in the inflowing requests. The threads and requests are de-coupled and hence any lock request only makes the execution threads take up another request instead of waiting until the lock is acquired.
Abstract: A server architecture performs concurrent information processing in a server system on a multi-core processor environment. The architecture supports simultaneous processing requests comprising multiple classes of queries and/or executing transactions in an application server and/or database server. Requests, which are made in an asynchronous manner, are structured with hash values to enable similar requests to be grouped together. The similar requests are grouped into a group session. All of the requests in the group session are executed at the same time. Accordingly, similar database inserts can be grouped and executed as a single request. The architecture minimizes thread-switching overhead by exploiting inherent parallelism in the inflowing requests. The threads and requests are de-coupled and hence any lock request only makes the execution threads take up another request instead of waiting until the lock is acquired.