Abstract: A method and apparatus for identifying and analyzing vapor elements, using a preconcentrator collector. The preconcentrator collector collects and preconcentrates chemical vapors to be detected and identified before chromatographic analysis using surface acoustic wave gas chromatograph (SAW/GC) technology. The preconcentrator collector is used in conjunction with a sensor in an SAW/GC detector in the apparatus. A physical parameter associated with the sensor changes in a defined manner upon exposure of the sensor to an unknown vapor, permitting identification of the individual vapor elements. The preconcentrator collector of the invention includes a body portion having an inlet and an outlet, and a stack of collector plates disposed in the body portion. The collector plates are made of a material that is easily micromachinable and easily cleanable, such as silicon, silica or fused quartz.
Abstract: A process whereby the olfactory response of a gas chromatograph, equipped with a focused surface acoustic wave interferometer integrating detector is converted to a visual image for the purpose of performing pattern recognition. As volatile analytes exit a gas chromatography column a Surface Acoustic Wave Interferometer is used to monitor the condensation and re-evaporation of these analytes by periodically measuring the resonant frequency of the interferometer. A time varying output parameter is then converted to a polar display. This form of electronic nose provides a recognizable visual image of specific vapor mixtures (fragrances) containing possibly hundreds of different chemical species. Because the method provides a means of adapting and learning to recognize new vapors using these images, it is a useful method for testing chemical compositions as well as the vapors associated with bacteria and human disease.