Abstract: The disclosed embodiments include a printer having a printing area configured to receive distinct mediums, and printer heads arranged relative to the printing area. The printer heads are collectively configured to print independent images onto the distinct mediums. The printer heads include at least one shared printer head configured to simultaneously print portions of the independent images onto each of two adjacent mediums.
Abstract: Compensation algorithms are applied to hide failed nozzles or, at least, reduce the objectionable effect of such nozzles in a printed image. Once a failed nozzle or under-performing nozzle is detected in a single-pass printing system, it is shut-off and the image data that was intended to be printed by this nozzle is redistributed to its neighboring nozzles. Embodiments of the invention use of a 1-D look-up table and stochastically distribute the duty cycle to each neighboring nozzle. In this way, failed nozzles are effectively hidden in the final print.
Type:
Grant
Filed:
June 13, 2014
Date of Patent:
March 13, 2018
Assignee:
ELECTRONICS FOR IMAGING, INC.
Inventors:
Steven Billow, Leon Williams, Ghilad Dziesietnik
Abstract: Embodiments of the invention combine pigmented and soluble salt digital ink technologies by dispersing water-soluble metal salts as particles in a non-aqueous inkjet ink fluid. The metal salts are dispersed as pigment-like particles, and not as a dissolved solute.
Abstract: A proxy software service determines all I/O devices independent of subnet location, on a network; provides a network interface on a wireless subnet that can receive and respond to requests; responds to such requests for each I/O device so identified so that the I/O device is available to the wireless device user for device selection; transfers and translates, if necessary, the IPP stream received from the wireless device to the network address of the I/O device so that the I/O device simulates a compliant I/O device; and transfers and translates, if necessary, all necessary status and command messages from the present protocol to the protocol supported by a legacy I/O device.
Type:
Grant
Filed:
May 3, 2011
Date of Patent:
February 13, 2018
Assignee:
ELECTRONICS FOR IMAGING, INC.
Inventors:
Leon Williams, Patrick Wood, Jonathan Marsden
Abstract: Individually controllable ultraviolet (UV) light-emitting diodes (LEDs) are used to cure ink and generate different effects. The UV LEDs only expose specified areas to generate the different effect and can create multiple effects on the same substrate by exposing different areas to varying amounts of time or by performing a curing stage and post-dosage curing stages. The different effects include generating a glossy surface, a matte surface, and sharper images.
Abstract: An energy curable foam inhibition ink composition comprises an oligomer component consisting of 5-15% by weight of the ink composition, a photoinitiator component consisting of 5-15% by weight of ink composition, a monofunctional monomer component consisting of 20-40% by weight of ink composition, a difunctional monomer component consisting of 10-20% by weight of the ink composition, and an inhibitor additive consisting of 5-20% of the ink composition.
Abstract: Various of the disclosed embodiments concern printing systems configured to deposit flexible dye sublimation inks onto flexible transfer materials. Together, the flexible ink and transfer material allow images to be transferred onto complex-shaped, i.e. non-planar, surfaces of a substrate. The flexible ink may be, for example, a thermoformable UV dye sublimation ink or a superflexible UV dye sublimation ink. In order to transfer an image onto the substrate, the transfer material is pressed onto the surface of the substrate. The substrate, transfer material, or both are heated to a temperature sufficient to cause the ink to sublimate. During the sublimation process, dye is able to permeate the substrate and form a transferred image. The flexible ink formulation may also include a soluble or solvent-sensitive component. In such embodiments, a solvent can be jetted onto the substrate and/or transfer material to remove residual ink.
Abstract: Disclosed are compositions, such as inkjet inks, for jetting onto a ceramic substrate, and associated methods and systems. The compositions comprise a pigment compound that is configured to be jetted on a ceramic substrate during a ceramic inkjet process to impart a color effect to the ceramic substrate, and a reduction agent which, when exposed to a firing temperature, reacts with the pigment compound to cause a reduction reaction. In some embodiments, the pigment compound comprises jettable copper particles, which can cause the fired composition to take on a red or oxblood color, which can be used for decoration.
Type:
Grant
Filed:
July 16, 2014
Date of Patent:
November 21, 2017
Assignee:
ELECTRONICS FOR IMAGING, INC.
Inventors:
Mark Zavada, David Weber, Louis Fage, Matthew Tennis
Abstract: A device for stacking a plurality of partially connected labels into a plurality of partially connected pads of labels comprises a robot arm having at least one vacuum source configured to selectively supply a vacuum force. The device also includes a plate coupled to the robot arm and a flexible pad coupled to the plate and including a plurality of apertures configured to direct the majority of the vacuum force through the flexible pad to a surface of the plurality of partially connected labels.
Type:
Grant
Filed:
April 19, 2016
Date of Patent:
October 31, 2017
Assignee:
Electronic Imaging Services, Inc.
Inventors:
Paul Browning, Gene Bethards, Scott Aten, Brian LeFevre, Patrick Cross
Abstract: Embodiments of the invention relate to the automatic measuring of such qualities of a printed sheet as reflectance excluding specular reflectance, reflectance including specular reflectance, e.g. gloss, transmittance, half-tone coverage, and the like.
Abstract: A radiation-curable ink composition for application to glass, ceramic, or metal by an inkjet printer. The ink composition can be applied to a glass, ceramic, or metal substrate to decorate, protect, etc. the substrate. In some embodiments, the ink composition includes a glass frits component, a chromophore component, and a UV-curable component. The glass frits component facilitates the fusing of the ink component with a glass, ceramic, or metal substrate to which the ink composition is applied. The chromophore component is the primary colorant of the ink composition. The UV-curable component facilitates activation of polymerization upon exposure to ultra-violet (UV) radiation, which causes the ink composition to cure and fix/pin to the underlying substrate. After the ink composition is applied to a substrate and cured by exposure to UV radiation, the substrate is heated to a temperature that causes the ink composition to fuse with the substrate.
Type:
Grant
Filed:
October 19, 2015
Date of Patent:
October 17, 2017
Assignee:
ELECTRONICS FOR IMAGING, INC.
Inventors:
Jiangping Wang, Matthew Tennis, Mark Zavada, Huilei Zhang, Paul Edwards, Loius Justus Fage
Abstract: Various of the disclosed embodiments concern removable ultraviolet (UV) curable dye sublimation ink to be used in various printing systems and printing methods. In some embodiments, the ink includes a dye component, a UV curable component, and a soluble or solvent-sensitive component. In order to print an image on a substrate, the ink is heated to a temperature sufficient to cause sublimation of at least the dye component. During the sublimation process, the dye is able to permeate the substrate and form a printed image. After the transfer process has been completed, a solvent can be jetted onto the substrate that causes the soluble component to dissolve. The washing process ensures that any residual ink remaining on the surface of the substrate is substantially removed.
Abstract: Limitations of conventional dimensional printing techniques are addressed to provide features and flexibility not presently available, including extracting images selectively from a Postscript® or PDF file and thus enable texturing of individual images within a page; constructing the texture automatically directly from the image using image processing techniques; visualizing the texture to be applied to an image via construction of a bump map or normal map in openGL and DirectX®; adjusting texturing parameters via visual feedback in openGL and DirectX®; and inserting a clear texture back into a PDF file for printing automatically.
Abstract: Methods and apparatus for processing a page description language (“PDL”) data stream are provided. The methods and apparatus divide the PDL data stream to provide a plurality of PDL segments, create associated first and second data files for each of the PDL segments, and assign the first data file or the second data file associated with each of the PDL segments to at least one of a plurality of PDL processors.
Type:
Grant
Filed:
July 21, 2015
Date of Patent:
October 3, 2017
Assignee:
ELECTRONICS FOR IMAGING, INC.
Inventors:
Patrick H. Wood, Boris Aronshtam, Sol Goldenberg
Abstract: A system and methods for printing and curing ink deposited on a substrate using a first light source and a second light source. In various embodiments, the first light source emits one or more wavelengths of electromagnetic radiation subtype C (UVC), and the second light source emits one or more wavelengths of electromagnetic radiation subtype A (UVA), subtype B (UVB), subtype V (UVV), or a combination thereof. The substrate is configured such that any ink deposited on the substrate by a printer head is predominantly exposed to the first light source prior to the second light source.
Type:
Grant
Filed:
March 6, 2015
Date of Patent:
September 19, 2017
Assignee:
ELECTRONICS FOR IMAGING, INC.
Inventors:
Dan-Cristian Grigore, Paul Andrew Edwards, Steven Billow
Abstract: Embodiments of the invention take advantage of the change in gloss caused by overprinting a printed image with clear ink. Embodiments of the invention thus implement gloss control functionality in a printer without the requirements of a pin and cure or other known systems.
Abstract: The uniformity of performance of inkjet nozzles within a print head containing a plurality of said nozzles is optimized by characterizing one or more performance attributes of the nozzles within said print head. A waveform set is generated that comprises a plurality of waveforms to compensate for variations of the one or more performance attributes among the nozzles. One of the waveforms within the waveform set is assigned to each nozzle to optimize the one or more performance attributes of each nozzle relative to each other nozzle in the print head. Based upon the waveform assigned to each nozzle, each nozzle in the print head responds substantially uniformly relative to each other nozzle in the print head.
Abstract: White-balance is improved when printing on colored media, while minimizing the time and use of costly materials required by present approaches. In an embodiment, the typical solid white fill or background layer is altered by including in the white layer one or more of the other colors already available in the printer to shade this layer. Thus, a small amount of cyan, for example, helps balance a pink-ish (red) media; yellow is used for blue media; and magenta is used for green media; as well as combinations thereof. A combination of transparent process inks and opaque white helps to maintain brightness (luminosity).
Type:
Grant
Filed:
April 4, 2016
Date of Patent:
July 4, 2017
Assignee:
ELECTRONICS FOR IMAGING, INC.
Inventors:
Peter Heath, Joseph A. Lahut, Dwight Cram, Bryan Ko
Abstract: An external table height adjustment technique for a printer system is disclosed. An operator can align an image gap between a printer table of the printer system and a printhead carriage via a height adjustment mechanism. The operator can perform the table height adjustment while a belt is installed on the printer table and media is loaded on top of the printer table. A height adjustment assembly is secured onto a supporting frame of the printer table such that an adjustment component exposed beyond an edge of the belt can raise or lower a portion of the printer table where the height adjustment assembly is secured.
Abstract: A 3D relief effect is created on a ceramic tile with an inkjet printer and an inkjet print head by printing a relief pattern with an effect ink having a low surface tension on the ceramic tile. The inkjet printer and inkjet print head apply an aqueous glaze slurry having a high surface tension on top of the effect ink. An image is printed on the glaze and the tile is fired. A difference in surface tensions causes the aqueous glaze to move away from the printed effect ink, resulting in a relief pattern in the image at locations of the printed relief pattern.