Patents Assigned to Electrovaya Inc.
  • Publication number: 20220407042
    Abstract: An electrochemical cell and a method of preparing the electrochemical cell are provided. The electrochemical cell, such as a lithium battery or a solid-state lithium ion battery, includes a first electrode having a solid polymer electrolyte deposited thereon, wherein the solid polymer electrolyte comprises a microporous polymer swollen with an organic carbonate liquid and a dissociable lithium salt, and a second electrode. The method of preparing an electrochemical cell includes providing the first electrode, immersing the first electrode in an electrolyte solution, depositing the solid polymer electrolyte on the immersed first electrode, and attaching the second electrode to an exposed surface of the solid polymer electrolyte, thereby forming the electrochemical cell. During operation, the solid polymer electrolyte is capable of growing a passivating polymer layer at an interface between the first electrode and the solid polymer electrolyte.
    Type: Application
    Filed: March 16, 2022
    Publication date: December 22, 2022
    Applicant: ELECTROVAYA INC.
    Inventors: Sankar DASGUPTA, Colin BRIDGES, Rajshekar DASGUPTA, Elmira Memarzadeh
  • Patent number: 11355744
    Abstract: The present disclosure relates generally to an electrode produced with a non-toxic solvent, resulting in a homogeneous mixture with uniform distributions of a conductive additive and a binder. Electrodes produced according to the present disclosure feature narrow binder particle size distribution, which distinguishes such electrodes from typical electrodes produced via a N-Methyl-Pyrrolidone (NMP) process. The resulting microstructure promotes the flow of current through the electrode and has an improved cycling stability due, in part, to the binder's and the conductive additive's ability to bind with the active material particles used in the fabrication of the electrode.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: June 7, 2022
    Assignee: ELECTROVAYA INC.
    Inventors: Rajshekar Das Gupta, Elmira Memarzadeh, Sankar Das Gupta, Bjorn Haugseter, Tom Henriksen, Lars Ole Valøen, Akhilesh Kumar Srivastava
  • Patent number: 10797277
    Abstract: A double-sealed thin film electrochemical pouch cell, comprising a cathode current collector, a cathode, an electrolyte, an anode, and an anode current collector, which is double-sealed by a first inner laminate layer forming a primary seal covered by a second outer polymer layer forming a secondary seal The second outer polymer layer comprises embedded particles to increase the thermal conductivity of the second outer polymer layer.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 6, 2020
    Assignee: ELECTROVAYA INC.
    Inventors: Rakesh Bhola, Rajshekar Das Gupta, Sankar Das Gupta
  • Patent number: 10153482
    Abstract: The present invention relates to a method for manufacturing slurry for coating of electrodes for use in lithium ion batteries, wherein the method comprises mixing active materials with a binder into a binder solution, and adding an organic carbonate to the binder solution to generate the slurry. The present invention also relates to a method for manufacturing electrodes for a lithium battery cell, wherein the method comprises mixing active materials with a binder into a binder solution, adding an organic carbonate to the binder solution to generate slurry, wherein the above adding step is carried out at temperature above melting temperature of the organic carbonate, coating electrode material with the slurry, drying the coating on the electrode material by drying the organic carbonate, and surface treatment of the slurry so that the electrode is prepared for use in a lithium ion battery cell.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: December 11, 2018
    Assignee: ELECTROVAYA INC.
    Inventors: Bjorn Haugseter, Tom Henriksen, Lars Ole Valøen, Akhilesh Kumar Srivastava
  • Patent number: 10033072
    Abstract: A battery module for receiving battery cells provides cooling through a cooling fluid. Chilled fluid travels first to the hottest part of the battery module and then continues to gradually less hot areas. As the chilled cooling fluid absorbs heat and travels to cooler parts of the battery module, the heat transfer between the fluid and the battery cells decreases because the temperature differential between the cells and cooling fluid decreases, providing a more even temperature distribution across the battery module. The cooling fluid may be contained in a conduit associated with one or more cooling plates. A plurality of slots provide a precise mechanical support for each battery cell, increasing the heat conduction from the cell to the battery module, protecting the battery module from vibration and decreasing contamination in case of thermal runaway or other damage to the cells.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: July 24, 2018
    Assignee: ELECTROVAYA INC.
    Inventors: Rakesh Bhola, Rajshekar Das Gupta
  • Patent number: 9853254
    Abstract: A double-sealed thin film electrochemical pouch cell, comprising a cathode current collector, a cathode, an electrolyte, an anode, and an anode current collector, which is double-sealed by a first inner laminate layer forming a primary seal covered by a second outer polymer layer forming a secondary seal. The second outer polymer layer comprises embedded particles to increase the thermal conductivity of the second outer polymer layer.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: December 26, 2017
    Assignee: ELECTROVAYA INC.
    Inventors: Rakesh Bhola, Rajshekar Das Gupta, Sankar Das Gupta
  • Patent number: 9324998
    Abstract: The present invention relates to a method for manufacturing slurry for coating of electrodes for use in lithium ion batteries, wherein the method comprises mixing active materials with a binder into a binder solution, and adding an organic carbonate to the binder solution to generate the slurry. The present invention also relates to a method for manufacturing electrodes for a lithium battery cell, wherein the method comprises mixing active materials with a binder into a binder solution, adding an organic carbonate to the binder solution to generate slurry, wherein the above adding step is carried out at temperature above melting temperature of the organic carbonate, coating electrode material with the slurry, drying the coating on the electrode material by drying the organic carbonate, and surface treatment of the slurry so that the electrode is prepared for use in a lithium ion battery cell. Further, the invention also relates to a method for manufacturing a lithium ion battery cell.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: April 26, 2016
    Assignee: Electrovaya, Inc.
    Inventors: Bjorn Haugseter, Tom Henriksen, Lars Ole Valøen, Akhilesh Kumar Srivastava
  • Publication number: 20140363721
    Abstract: A double-sealed thin film electrochemical pouch cell, comprising a cathode current collector, a cathode, an electrolyte, an anode, and an anode current collector, which is double-sealed by a first inner laminate layer forming a primary seal covered by a second outer polymer layer forming a secondary seal. The second outer polymer layer comprises embedded particles to increase the thermal conductivity of the second outer polymer layer.
    Type: Application
    Filed: January 7, 2013
    Publication date: December 11, 2014
    Applicant: ELECTROVAYA INC.
    Inventors: Rakesh Bhola, Rajshekar Das Gupta, Sankar Das Gupta
  • Patent number: 7923156
    Abstract: The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or micro-porous inert, multi-layered polymer separator laminate which carries an adherent second polymer coating containing a dissociable lithium compound, and the multi-layered separator having adherent solid second polymer layer, is impregnated with an organic liquid containing another lithium salt. The porous or micro-porous separator laminate is made of multiple polymer layers, at least one of the member layers having melting temperature at least 20-C below the melting temperature of the other polymer member layers. The composite porous electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent, dissociable lithium compound containing, solid second polymer layer on each of its major faces.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: April 12, 2011
    Assignee: Electrovaya Inc.
    Inventors: Sankar Dasgupta, Rakesh Bhola, James Jacobs
  • Publication number: 20100075232
    Abstract: The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or micro-porous inert, multi-layered polymer separator laminate which carries an adherent second polymer coating containing a dissociable lithium compound, and the multi-layered separator having adherent solid second polymer layer, is impregnated with an organic liquid containing another lithium salt. The porous or micro-porous separator laminate is made of multiple polymer layers, at least one of the member layers having melting temperature at least 20-C below the melting temperature of the other polymer member layers. The composite porous electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent, dissociable lithium compound containing, solid second polymer layer on each of its major faces.
    Type: Application
    Filed: September 15, 2009
    Publication date: March 25, 2010
    Applicant: Electrovaya Inc.
    Inventors: Sankar Dasgupta, Rakesh Bhola, James Jacobs
  • Patent number: 7570012
    Abstract: An electrical energy storage device for storing electrical energy and supplying the electrical energy to a driving motor at different power levels is disclosed. The electrical storage device has an energy battery connected to a power battery. The energy battery has a higher energy density than the power battery. However, the power battery can provide electrical power to the electrical motor at different power rates, thereby ensuring that the motor has sufficient power and current when needed. The power battery can be recharged by the energy storage battery. In this way, the power battery temporarily stores electrical energy received from the energy battery and both batteries can provide electrical energy at the different power rates as required by the motor. The energy storage device can be releasably connected to an external power source in order to recharge both batteries. Both batteries can be recharged independently to optimize the recharging and lifetime characteristics of the batteries.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: August 4, 2009
    Assignee: Electrovaya Inc.
    Inventors: Sankar Dasgupta, James K. Jacobs, Rakesh Bhola
  • Patent number: 7432687
    Abstract: A high efficiency switching power supply including an analog front end, a battery control circuitry portion, a display and equalization circuitry portion, field effect transistor (FET) drivers, an isolated power supply transformer circuitry (and three associated sets of tap circuitry), microcontroller circuitry, oscillator circuitry, overcharge protection circuitry, programmable logic circuitry portion, and a zero current predictor. Overbiasing of the FET power supply switches, and/or other various circuitry features disclosed herein, helps achieve electrical power efficiencies of preferably greater than 95%, even more preferably greater than 98% and even more preferably greater than 99%. Preferably, the switching power supply has one or more of the following: (1) high electrical power efficiency (>95%.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: October 7, 2008
    Assignee: Electrovaya Inc.
    Inventors: James K. Jacobs, Sankar DasGupta, David Vandermeer
  • Patent number: 7405497
    Abstract: An ultra-high-efficiency switching power supply system integrating, into a single package, power conversion switches for multiple power supplies, an input power switching block, an output power switching block, control logic for controlling the power conversion switches and control input/output ports. This integrated multiple power supply package is called a Power Bridge and preferably implements the integrated components as one or more integrated circuit chips housed in the package housing. The Power Bridge is a bridge between the microprocessor of a portable computer and its internal and external power sources. The power supply system facilitates board design because the ultra-high-efficiency power module generally requires less space and generates less heat than conventional power supply circuitry.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: July 29, 2008
    Assignee: Electrovaya Inc.
    Inventors: James K. Jacobs, Sankar DasGupta, David Vandermeer
  • Patent number: 7282814
    Abstract: A battery controller for charging and discharging a plurality of batteries is disclosed. The battery controller has a plurality of direct current to direct current (DC to DC) converters connected to each other in series. Each battery of a plurality of batteries is electrically connectable to a respective DC to DC converter. A co-ordinator connected to each of the plurality of DC to DC converters controls charging and discharging of the battery electrically connected to the respective converter. The co-ordinator can also control charging and discharging of any one of the batteries to ensure that the battery retains sufficient electrical capacity, and, to increase the longevity of the respective batteries. Because each battery is electrically connected to a respective DC to DC converter, the energy from one battery can be used to charge another battery in order to monitor battery characteristics including energy capacity of each battery.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: October 16, 2007
    Assignee: Electrovaya Inc.
    Inventor: James K. Jacobs
  • Patent number: 7033702
    Abstract: A matted particulate electrode located between the current collector and a porous separator of a rechargeable lithium battery is described, which contains electro-active particles intermixed with pliable, solid, lithium ion conducting, polymer electrolyte filaments having adhesive surfaces. The electro-active particles and the optionally added electro-conductive carbon particles adhere to the tacky surface of the adhesively interlinking polymer electrolyte filaments. The matted particulate electrode is impregnated with an organic solution containing another lithium compound. In a second embodiment the porous separator is coated on at least one of its faces, with polymer electrolyte having an adhesive surface and made of the same polymer as the electrolyte filaments. The polymer electrolyte filaments in the matted layer may adhere to the coated surface of the separator.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: April 25, 2006
    Assignee: Electrovaya Inc.
    Inventors: Sankar Dasgupta, James K. Jacobs, Rakesh Bhola
  • Patent number: 6815121
    Abstract: A matted particulate electrode located between the current collector and a porous separator of a rechargeable lithium battery is described, which contains electro-active particles intermixed with pliable, solid, lithium ion conducting, polymer electrolyte filaments having adhesive surfaces. The electro-active particles and the optionally added electro-conductive carbon particles adhere to the tacky surface of the adhesively interlinking polymer electrolyte filaments. The matted particulate electrode is impregnated with an organic solution containing another lithium compound. In a second embodiment the porous separator is coated on at least one of its faces, with polymer electrolyte having an adhesive surface and made of the same polymer as the electrolyte filaments. The polymer electrolyte filaments in the matted layer may adhere to the coated surface of the separator.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: November 9, 2004
    Assignee: Electrovaya Inc.
    Inventors: Sankar Dasgupta, James K. Jacobs, Rakesh Bhola
  • Publication number: 20040201365
    Abstract: An electrical energy storage device for storing electrical energy and supplying the electrical energy to a driving motor at different power levels is disclosed. The electrical storage device has an energy battery connected to a power battery. The energy battery has a higher energy density than the power battery. However, the power battery can provide electrical power to the electrical motor at different power rates, thereby ensuring that the motor has sufficient power and current when needed. The power battery can be recharged by the energy storage battery. In this way, the power battery temporarily stores electrical energy received from the energy battery and both batteries can provide electrical energy at the different power rates as required by the motor. The energy storage device can be releasably connected to an external power source in order to recharge both batteries. Both batteries can be recharged independently to optimize the recharging and lifetime characteristics of the batteries.
    Type: Application
    Filed: September 15, 2003
    Publication date: October 14, 2004
    Applicant: Electrovaya Inc.
    Inventors: Sankar Dasgupta, James K. Jacobs, Rakesh Bhola
  • Publication number: 20040175626
    Abstract: The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or micro-porous inert, multi-layered polymer separator laminate which carries an adherent second polymer coating containing a dissociable lithium compound, and the multi-layered separator having adherent solid second polymer layer, is impregnated with an organic liquid containing another lithium salt. The porous or micro-porous separator laminate is made of multiple polymer layers, at least one of the member layers having melting temperature at least 20-C below the melting temperature of the other polymer member layers. The composite porous electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent, dissociable lithium compound containing, solid second polymer layer on each of its major faces.
    Type: Application
    Filed: March 15, 2004
    Publication date: September 9, 2004
    Applicant: Electrovaya Inc.
    Inventors: Sankar Dasgupta, Rakesh Bhola, James K. Jacobs
  • Patent number: 6753114
    Abstract: The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or microporous inert polymer separator laminate which carries another porous polymer containing a dissociable lithium compound, and the adherent polymer layers are impregnated with an organic liquid containing a lithium salt. The porous or microporous separator laminate may be a single polymer layer or a multiple polymer layer. The composite electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent dissociable lithium compound containing polymer layer on each of its major faces.
    Type: Grant
    Filed: June 25, 1998
    Date of Patent: June 22, 2004
    Assignee: Electrovaya Inc.
    Inventors: James K. Jacobs, Sankar Dasgupta