Patents Assigned to Element Six Technologies US Corporation
  • Patent number: 11396715
    Abstract: A single crystal diamond material comprising: neutral nitrogen-vacancy defects (NV0); negatively charged nitrogen-vacancy defects (NV?); and single substitutional nitrogen defects (Ns) which transfer their charge to the neutral nitrogen-vacancy defects (NV0) to convert them into the negatively charged nitrogen-vacancy defects (NV), characterized in that the single crystal diamond material has a magnetometry figure of merit (FOM) of at least 2, wherein the magnetometry figure of merit is defined by (I) where R is a ratio of concentrations of negatively charged nitrogen-vacancy defects to neutral nitrogen-vacancy defects ([NV?]/[NV0]), [NV?] is the concentration of negatively charged nitrogen-vacancy defects measured in parts-per-million (ppm) atoms of the single crystal diamond material, [NV0] is a concentration of neutral nitrogen-vacancy defects measured in parts-per-million (ppm) atoms of the single crystal diamond material, and T2? is a decoherence time of the NV? defects, where T2? is T2* for DC magnetome
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: July 26, 2022
    Assignees: Element Six Technologies Limited, Element Six Technologies US Corporation
    Inventors: Wilbur Lew, Gregory Bruce, Andrew Mark Edmonds, Matthew Lee Markham, Alastair Douglas Stacey, Harpreet Kaur Dhillon
  • Patent number: 9359693
    Abstract: A method for integrating wide-gap semiconductors, and specifically, gallium nitride epilayers, with synthetic diamond substrates is disclosed. Diamond substrates are created by depositing synthetic diamond onto a nucleating layer deposited or formed on a layered structure that comprises at least one layer of gallium nitride. Methods for manufacturing GaN-on-diamond wafers with low bow and high crystalline quality are disclosed along with preferred choices for manufacturing GaN-on-diamond wafers and chips tailored to specific applications.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: June 7, 2016
    Assignee: ELEMENT SIX TECHNOLOGIES US CORPORATION
    Inventors: Daniel Francis, Firooz Faili, Kristopher Matthews, Frank Yantis Lowe, Quentin Diduck, Sergey Zaytsev, Felix Ejeckam
  • Patent number: 8945966
    Abstract: Methods for integrating wide-gap semiconductors with synthetic diamond substrates are disclosed. Diamond substrates are created by depositing synthetic diamond onto a nucleating layer deposited or formed on a layered structure including at least one layer of gallium nitride, aluminum nitride, silicon carbide, or zinc oxide. The resulting structure is a low stress process compatible with wide-gap semiconductor films, and may be processed into optical or high-power electronic devices. The diamond substrates serve as heat sinks or mechanical substrates.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: February 3, 2015
    Assignee: Element Six Technologies US Corporation
    Inventors: Daniel Francis, Felix Ejeckam, John Wasserbauer, Dubravko Babic
  • Patent number: 8796843
    Abstract: High-power and high-frequency semiconductor devices require high signal integrity and high thermal conductance assembly technologies and packages. In particular, wide-gap-semiconductor devices on diamond benefit from spatially separate electrical and thermal connections. This application discloses assembly and package architectures that offer high signal integrity and high thermal conductance.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: August 5, 2014
    Assignee: Element Six Technologies US Corporation
    Inventors: Dubravko I. Babic, Quentin E. Diduck, Alex Schreiber
  • Patent number: 8759134
    Abstract: Methods for integrating wide-gap semiconductors, and specifically, gallium nitride epilayers with synthetic diamond substrates are disclosed. Diamond substrates are created by depositing synthetic diamond onto a nucleating layer deposited or formed on a layered structure that comprises at least one layer made out of gallium nitride. Methods for manufacturing GaN-on-diamond wafers with low bow and high crystalline quality are disclosed along with preferred choices for manufacturing GaN-on-diamond wafers and chips tailored to specific applications.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: June 24, 2014
    Assignee: Element Six Technologies US Corporation
    Inventors: Felix Ejeckam, Daniel Francis, Quentin Diduck, Firooz Nasser-Faili, Dubravko Babić
  • Publication number: 20140141595
    Abstract: Methods for integrating wide-gap semiconductors, and specifically, gallium nitride epilayers with synthetic diamond substrates are disclosed. Diamond substrates are created by depositing synthetic diamond onto a nucleating layer deposited or formed on a layered structure that comprises at least one layer made out of gallium nitride. Methods for manufacturing GaN-on-diamond wafers with low bow and high crystalline quality are disclosed along with preferred choices for manufacturing GaN-on-diamond wafers and chips tailored to specific applications.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: ELEMENT SIX TECHNOLOGIES US CORPORATION
    Inventors: Dubravko Babic, Firooz Nasser-Faili, Daniel Francis, Quentin Diduck, Felix Ejeckam
  • Patent number: 8674405
    Abstract: Methods for integrating wide-gap semiconductors, and specifically, gallium nitride epilayers with synthetic diamond substrates are disclosed. Diamond substrates are created by depositing synthetic diamond onto a nucleating layer deposited or formed on a layered structure that comprises at least one layer made out of gallium nitride. Methods for manufacturing GaN-on-diamond wafers with low bow and high crystalline quality are disclosed along with preferred choices for manufacturing GaN-on-diamond wafers and chips tailored to specific applications.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: March 18, 2014
    Assignee: Element Six Technologies US Corporation
    Inventors: Dubravko Babić, Firooz Faili, Daniel Francis, Quentin Diduck, Felix Ejeckam