Patents Assigned to ELICHENS
  • Patent number: 11921031
    Abstract: A gas sensor comprises an enclosure configured to receive a gas. The enclosure comprises a sidewall extending, around a transverse axis, between a first wall and a second wall. The sensor also comprises a light source configured to emit a light wave that propagates in the enclosure and forms, from the light source, a first light cone. A measuring photodetector is configured to detect the light wave emitted by the light source and propagated through the enclosure. The first wall and the second wall each comprise at least one reflective surface, forming a portion of an ellipsoid of revolution. Each reflective surface is associated with a rank n, n being an integer greater than or equal to 1.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 5, 2024
    Assignee: ELICHENS
    Inventor: Hélène Duprez
  • Patent number: 11879881
    Abstract: A method for calibrating a gas sensor includes associating a reference station with the gas sensor, the latter belonging to a network of sensors distributed between various positions in a geographical region and being configured to measure a concentration of an analyte in the air at various measurement times. The geographical regions comprises reference station(s) remote from the gas sensor and configured to measure, at various reference times, a concentration of the analyte in the air. During a calibration time slot, an analyte concentration is measured with the gas sensor, taking into account an analyte concentration measured by the reference station associated with the gas sensor. From the analyte concentration measured by the reference station in the calibration time slot, an analyte concentration in the position of the gas sensor is estimated. The estimated analyte concentration and the analyte concentration measured by the gas sensor are compared.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: January 23, 2024
    Assignee: ELICHENS
    Inventor: Benjamin Lebegue
  • Patent number: 11467147
    Abstract: A method for estimating a mapping of the concentration of an analyte in an environment uses sensors distributed in the environment. Each sensor generates a measurement of the analyte concentration at various measurement instants, which measurements are carried out by each sensor at each measurement instant, forming an observation vector, each term of which corresponds to a measurement arising from a sensor. The environment is spatially meshed with a plurality of mesh cells. The analyte concentration at each mesh cell, at each measurement instant, forms a “state vector,” each term of which corresponds to an analyte concentration in a mesh cell. A “global bias” is determined and used to correct the state vector to obtain a “debiased state vector.” The state vector is also corrected by a local correction vector as a function of a correction vector.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: October 11, 2022
    Assignee: ELICHENS
    Inventor: Franck Lascaux
  • Patent number: 11408877
    Abstract: A system, for measuring a physical quantity representative of air quality in an observation zone, comprises a mapping with a set (V) of modeled values representative of the physical quantity; means for measuring the physical quantity and possessing N positions or N trajectories in the observation zone to exhibit a spatial distribution (Sopt); and means for calculating Sopt. The calculating means are configured to construct a mesh comprising G points in the observation zone; calculate, for a given spatial distribution, an estimator ({circumflex over (V)}) of the set V for each of the G points in the mesh; calculate a cost function representative of the difference or of the likelihood between {circumflex over (V)} and the V values extracted at the G points; and extract the Sopt to minimize or maximize the cost function.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: August 9, 2022
    Assignee: ELICHENS
    Inventor: Paolo Zanini
  • Patent number: 11060972
    Abstract: The invention relates to a method for analyzing gas by an optical method, according to which a gas sample, comprising gaseous species for which it is desired to determine the quantity, is subjected to an illuminating radiation generated by a light source. The method comprises detecting a radiation having crossed the gas, by means of a light sensor. According to the invention, the light source produces different successive illuminations, such that at each illumination, the spectrum of the illuminating radiation varies. During each illumination, the intensity of the radiation detected by the light sensor is recorded. A processor can estimate a quantity of each gaseous species as a function of the respective intensities measured during each illumination. The invention also relates to a gas analysis device implementing the method.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: July 13, 2021
    Assignee: ELICHENS
    Inventor: Yanis Caritu
  • Patent number: 11054360
    Abstract: A device for measuring and tracking over time the quantity or concentration of a component in a fluid comprises: a sensor capable of measuring a quantity or concentration of the component in the fluid and providing a quantitative signal for tracking this quantity or concentration over time; a signal-processing module comprising a low-pass filter of the quantitative tracking signal; and an output interface for providing the filtered quantitative tracking signal. The signal-processing module comprises an estimator of a value of instantaneous trend of variation of the quantitative tracking signal in a predetermined sliding time window. Also provided is means for adjusting over time a high cutoff frequency of the low-pass filter according to the estimated value of instantaneous trend of variation.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: July 6, 2021
    Assignee: eLICHENS
    Inventor: Thanh Trung Le
  • Patent number: 11041801
    Abstract: A method for measuring a quantity of a gaseous species—present in a gas and able to absorb light in an absorption spectral band—comprises: arranging the gas between a light source and a measurement photodetector, the light source being suitable for emitting an incident light wave propagating through the gas to the measurement photodetector, which is suitable for detecting a light wave transmitted by the gas, in the absorption spectral band; illuminating the gas by the light source; measuring, by the measurement photodetector, a measurement intensity of the light wave transmitted by the gas, in the absorption spectral band; measuring, by a reference photodetector, a reference intensity of a reference light wave being emitted by the light source. The method comprises a correction of the reference intensity by consideration of a parametric model, the parameters of the model being determined according to reference intensity measurements performed at various times.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: June 22, 2021
    Assignee: ELICHENS
    Inventors: Aurélien Mayoue, Chakib Belafdil
  • Patent number: 11022547
    Abstract: A gas sensor comprises a chamber configured to receive a gas; a light source configured to emit a light wave propagating through the chamber in an emission cone; a measurement photodetector and a reference photodetector, each configured to detect a light wave emitted by the light source and having passed through the chamber. The chamber extends between two transverse walls, arranged opposite one another and connected to one another by a peripheral wall extending therebetween, about a longitudinal axis (Z), and comprising a first reflective segment configured to receive a first portion of the emission cone to reflect it toward the measurement photodetector, thus forming a measurement cone converging toward the measurement photodetector. A second reflective segment of the peripheral wall is configured to receive a second portion of the emission cone to reflect it toward the reference photodetector, thus forming a reference cone converging toward the reference photodetector.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: June 1, 2021
    Assignee: ELICHENS
    Inventor: Hélène Duprez
  • Patent number: 10788417
    Abstract: A method for analyzing a gaseous sample, by comparing an incident light wave and a transmitted light wave, the method comprising: i) illuminating the sample with a light source emitting the incident light wave propagating up to the sample; ii) detecting a light wave transmitted by the sample; iii) detecting a reference light wave emitted by the light source and representing a light wave reaching a reference photodetector without interacting with the sample; iv) repeating i) to iii) at different measurement instants; v) estimating, at each measurement instant, an intensity of the reference light wave; vi) taking into account the estimated intensity of the reference light wave and the detected intensity of the transmitted light wave to perform a comparison, at each measurement instant; and vii) analyzing the gaseous sample as a function of the comparison.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: September 29, 2020
    Assignee: Elichens
    Inventor: Thanh Trung Le
  • Publication number: 20200132588
    Abstract: A device for measuring and tracking over time the quantity or concentration of a component in a fluid comprises: a sensor capable of measuring a quantity or concentration of the component in the fluid and providing a quantitative signal for tracking this quantity or concentration over time; a signal-processing module comprising a low-pass filter of the quantitative tracking signal; and an output interface for providing the filtered quantitative tracking signal. The signal-processing module comprises an estimator of a value of instantaneous trend of variation of the quantitative tracking signal in a predetermined sliding time window. Also provided is means for adjusting over time a high cutoff frequency of the low-pass filter according to the estimated value of instantaneous trend of variation.
    Type: Application
    Filed: April 20, 2018
    Publication date: April 30, 2020
    Applicant: eLICHENS
    Inventor: Thanh Trung LE
  • Publication number: 20200116629
    Abstract: A method for measuring a quantity of a gaseous species—present in a gas and able to absorb light in an absorption spectral band—comprises: arranging the gas between a light source and a measurement photodetector, the light source being suitable for emitting an incident light wave propagating through the gas to the measurement photodetector, which is suitable for detecting a light wave transmitted by the gas, in the absorption spectral band; illuminating the gas by the light source; measuring, by the measurement photodetector, a measurement intensity of the light wave transmitted by the gas, in the absorption spectral band; measuring, by a reference photodetector, a reference intensity of a reference light wave being emitted by the light source. The method comprises a correction of the reference intensity by consideration of a parametric model, the parameters of the model been determined according to reference intensity measurements performed at various times.
    Type: Application
    Filed: June 14, 2018
    Publication date: April 16, 2020
    Applicants: ELICHENS, ELICHENS
    Inventors: Aurélien Mayoue, Chakib Belafdil
  • Publication number: 20190265158
    Abstract: The invention relates to a method for analyzing gas by an optical method, according to which a gas sample, comprising gaseous species for which it is desired to determine the quantity, is subjected to an illuminating radiation generated by a light source. The method comprises detecting a radiation having crossed the gas, by means of a light sensor. According to the invention, the light source produces different successive illuminations, such that at each illumination, the spectrum of the illuminating radiation varies. During each illumination, the intensity of the radiation detected by the light sensor is recorded. A processor can estimate a quantity of each gaseous species as a function of the respective intensities measured during each illumination. The invention also relates to a gas analysis device implementing the method.
    Type: Application
    Filed: September 1, 2017
    Publication date: August 29, 2019
    Applicant: ELICHENS
    Inventor: Yanis CARITU