Abstract: A sensor element material web for selectively cutting an operable sensor from the web includes a sensor film. A first electrode film is disposed on a first side and includes metallic electrodes in a first repeating pattern. A second electrode film is disposed on a second side and includes a plurality of second metallic electrodes in a second repeating pattern. A dielectric film is disposed on the first or the second electrode films. The first and the second repeating patterns permit the sensor to be cut.
Abstract: The invention relates to a method for the manufacture of a sensor element and to a sensor element. In the method, both surfaces of a sensor film are provided with metallic electrodes. The sensor element is produced by cutting it from a larger amount of sensor element material. In the manufacture of the sensor element material, the electrodes are produced as a continuous process from roll to roll and the sensor element material is formed by laminating as a continuous process from roll to roll. At least the signal electrode consists of repeated electrode patterns (41) which are at least partially connected to each other via one or more narrow connecting strips (42), and a sensor element of a desired length and/or shape is produced by cutting the material across the region of the connecting strips.
Abstract: Method for manufacturing an electromechanical sensor element for converting mechanical forces produced by the movements and vital functions or a person into electric signals, in which method a sensor film (11) is provided with metallic electrodes (15,16) placed on either side of it, at least one of said electrodes being a signal electrode, in which method is produced by cutting off a larger amount of sensor element material, in which method in the manufacture of sensor element material the electrodes are created in a continuous roll-to-roll process, and in which method the sensor element material is produced by laminating as a continuous roll-to-roll process. At least the sensor element material consists of repeated electrode patterns and a sensor element of a desired size and/or shape is formed by cutting the material between the patterns.
Abstract: The invention relates to a method for the manufacture of a sensor element and to a sensor element. In the method, both surfaces of a sensor film are provided with metallic electrodes. The sensor element is produced by cutting it from a larger amount of sensor element material. In the manufacture of the sensor element material, the electrodes are produced as a continuous process from roll to roll and the sensor element material is formed by laminating as a continuous process from roll to roll. At least the signal electrode consists of repeated electrode patterns which are at least partially connected to each other via one or more narrow connecting strips, and a sensor element of a desired length and/or shape is produced by cutting the material across the region of the connecting strips.
Abstract: Electromechanical transducer element for converting mechanical stress into electrical signals, said transducer comprising: at least one transducer elements (119,120), said element having first and second surfaces; at least one signal electrode layer (209) arranged between two transducer elements, said signal electrode layer being a metal layer arranged in direct contact with first surfaces of the two transducer film elements. Bosses may be arranged adjacent to and/or partly onto at least one electrode layer. The invention relates also to a manufacturing method where adjacent to and/or partly onto a signal electrode and/or a ground electrode a thicker layer of isolating material is deposited, or for composition of the film bosses are arranged in the signal and/or ground electrode.
Abstract: Film of dielectric material, which film contains gas bubbles preferably of a flat shape. To achieve improved electrical properties, the film is given a large internal unipolar charge, which is created by charging the film by means of an electric field intensive enough to produce partial discharges in the gas bubbles and to cause the charges to move into the dielectric material of the film.
Type:
Grant
Filed:
January 11, 2001
Date of Patent:
February 8, 2005
Assignee:
Emfitech Oy
Inventors:
Kari Kirjavainen, Keijo Korhonen, Jyrki Kroger, Lasse Raisanen