Abstract: Methods and devices are provided for targeted administration of a drug to a patient's eye. In one embodiment, the method includes inserting a hollow microneedle into the sclera of the eye at an insertion site and infusing a fluid drug formulation through the inserted microneedle and into the suprachoroidal space of the eye, wherein the infused fluid drug formulation flows within the suprachoroidal space away from the insertion site during the infusion. The fluid drug formulation may flow circumferentially toward the retinochoroidal tissue, macula, and optic nerve in the posterior segment of the eye.
Type:
Application
Filed:
December 20, 2013
Publication date:
April 17, 2014
Applicants:
Georgia Tech Research Corporation, Emory Univeristy
Inventors:
Mark R. Prausnitz, Henry F. Edelhauser, Samirkumar Rajnikant Patel
Abstract: Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxy-terminus by specific methylesterase. Carboxymethylation affects PP2A activity and varies during the cell cycle. The present disclosure provides the coding sequence of a methylesterase, herein named Protein Phosphatase Methylesterase-1 (PME-1). PME-1 is highly conserved from yeast to human and contains a motif found in lipases, which motif has a catalytic triad-activated serine as the active site nucleophile. Recombinant PME-1 polypeptide produced in bacteria demethylates PP2A C subunit in vitro and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. PME-1 represents the first mammalian protein phosphatase methylesterase cloned to date.