Patents Assigned to Endospan Ltd.
  • Patent number: 8574287
    Abstract: A stent (120) has proximal and distal ends (140, 142), and is configured to assume radially-compressed and radially-expanded states. The stent (120) comprises a plurality of circumferential bands (122) disposed about a longitudinal axis (123) of the stent (120), each of which bands (122) comprises a plurality of struts (124) connected to one another. At least one of the bands (122) is shaped so as to define a plurality of distally-directed peaks (126) alternating with a plurality of proximally-directed troughs (128), and one or more strain-concentration modules (132). Each of the modules (132) has a central axis (156) parallel to the longitudinal axis (123) of the stent (120), and comprises: (a) an open loop section (150), which comprises one of the distally-directed peaks (126); (b) a primary neck section (152); and (c) a secondary section (154). Other embodiments are also described.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 5, 2013
    Assignee: Endospan Ltd.
    Inventors: Raphael Benary, Alon Shalev
  • Publication number: 20130289587
    Abstract: An extra-luminal ring (1200) includes a structural member (1202), which assumes a first elongate hollow shape (1206) when in a relaxed state; when deformed to a planar state (1208), generally defines a planar shape (1209) having two first sides (1220A, 1220B) parallel to each other, and two second sides (1222A, 1222B) parallel to each other; and when in the relaxed state, is configured such that the two first sides (1220A, 1220B) are generally straight and parallel with each other, and the two second sides (1222A, 1222B) are curved at least partially around a first longitudinal axis (1230) defined by the first elongate hollow shape (1206).
    Type: Application
    Filed: February 16, 2012
    Publication date: October 31, 2013
    Applicant: ENDOSPAN LTD.
    Inventor: Alon Shalev
  • Publication number: 20130261994
    Abstract: A biomedical tester includes a fluid-control container, shaped to define a fluid-control container port and a first interface surface defining fluid-control container apertures. A fluid controller is shaped to define a second interface surface defining controller ports. These elements and a motor are arranged to relative translation between the first and second interface surfaces; thereby effecting a time-varying overlap between subgroups of the system. Fixtures allow disposition therewithin of respective medical devices. Each of the fixtures includes one or more fixture first ports and fixture second ports. The fixture first ports are mounted in fluid Communication respective with the controller ports. A fluid pump includes first and second pump ports in fluid communication with the fixture second ports and the fluid-control container port, respectively.
    Type: Application
    Filed: October 10, 2011
    Publication date: October 3, 2013
    Applicant: ENDOSPAN LTD.
    Inventors: Sagi Raz, Raphael Benary, Alon Shalev
  • Publication number: 20130204343
    Abstract: A multi-component endovascular stent-graft system (10) includes a body portion (16), which includes a plurality of stent-grafts (20), which include: (a) respective stent members (22), which are shaped, when the stent-grafts (20) are in respective radially-expanded states, so as to define respective tubes, each of which is circumferentially complete at at least one longitudinal location therealong; and (b) respective graft members (24), which circumscribe respective circumferential arcs (40) of the respective stent members (22). The circumferential arcs (40) have respective extents that are less than entire circumferences of the respective stent members (22) at least partially along respective axial lengths of the stent members (22).
    Type: Application
    Filed: June 19, 2012
    Publication date: August 8, 2013
    Applicant: ENDOSPAN LTD.
    Inventor: Alon Shalev
  • Patent number: 8486131
    Abstract: A system for treating an aneurysmatic abdominal aorta, comprising (a) an extra-vascular wrapping (EVW) comprising (i) at least one medical textile member adapted to at least partially encircle a segment of aorta in proximity to the renal arteries, and (ii) a structural member, wherein EVW is adapted for laparoscopic delivery, and (b) an endovascular stent-graft (ESG) comprising (i) a compressible structural member, and (ii) a substantially fluid impervious fluid flow guide (FFG) attached thereto. Also described is an extra-vascular ring (EVR) adapted to encircle the neck of an aortic aneurysm. Further described are methods for treating an abdominal aortic aneurysm, comprising laparoscopically delivering the extra-vascular wrapping (EVW) and endovascularly placing an endovascular stent-graft (ESG). Also described are methods to treat a type I endoleak.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: July 16, 2013
    Assignee: Endospan Ltd.
    Inventor: Alon Shalev
  • Publication number: 20130131783
    Abstract: Medical apparatus (100) is provided for insertion into a mammalian body. The apparatus (100) includes structural stent elements (110), at least a portion of which are shaped so as to define (a) at least one generally circumferential band (112), and (b) a plurality of engagement members (114) that are joined to and extend radially inwardly from the band (112). The apparatus (100) further includes an elongated latch member (118) which is threaded through the engagement members (114), thereby physically latching the engagement members (114). The band (112) and the engagement members (114) are configured such that (a) when the latch member (118) is threaded through and thus physically latches the engagement members (114), the engagement members (114) retain the band (112) in a radially-compressed state, and (b) when the latch member (118) is removed from the engagement members (114), the band (112) assumes a radially-expanded state. Other embodiments are also described.
    Type: Application
    Filed: February 2, 2012
    Publication date: May 23, 2013
    Applicant: ENDOSPAN LTD.
    Inventors: Alon Shalev, Raphael Benary
  • Publication number: 20130090722
    Abstract: A multiple-component expandable endoluminal system for treating a lesion at a bifurcation including a self expandable tubular root member having a side-looking engagement aperture, a self expandable tubular trunk member comprising a substantially blood impervious polymeric liner secured therealong; both having a radially compressed state adapted for percutaneous intraluminal delivery and a radially expanded state adapted for endoluminal support.
    Type: Application
    Filed: October 29, 2012
    Publication date: April 11, 2013
    Applicant: ENDOSPAN LTD.
    Inventor: ENDOSPAN LTD.
  • Publication number: 20130035751
    Abstract: Apparatus (10) is provided, which includes an endovascular stent-graft (20) and a heating device (22) that is coupled to the stent-graft (20). The stent-graft (20) is configured to be implanted in at least one blood vessel in a vicinity of an aneurysm (102). The heating device (22) is configured to apply, to a region (24) external to the stent-graft (20), thermal energy sufficient to coagulate blood flowing into the aneurysm (102). Other embodiments are also described.
    Type: Application
    Filed: February 8, 2011
    Publication date: February 7, 2013
    Applicant: ENDOSPAN LTD.
    Inventor: Alon Shalev
  • Publication number: 20130013051
    Abstract: An endovascular stent-graft system (10) includes fenestrated and crossing stent-grafts (20, 22). The fenestrated stent-graft (20) defines first and second lateral apertures (40, 42) in a central portion (34) thereof, which apertures (40, 42) face in generally radially opposing directions. The crossing stent-graft (22) includes one or more covering elements (58), which at least partially cover both end portions (44, 46) of the crossing stent-graft (22), such that a central portion (54) is at least partially uncovered.
    Type: Application
    Filed: December 8, 2010
    Publication date: January 10, 2013
    Applicant: ENDOSPAN LTD.
    Inventor: Raphael Benary
  • Publication number: 20130013050
    Abstract: A multi-component stent-graft system (10) comprises first, second, and third generally tubular stent-grafts (20, 22, 24), which are configured to assume radially-expanded states. The first (20) is shaped so as to define a first lateral opening (34) when radially-expanded. The second (22) is shaped so as to define a second lateral opening (44) when radially-expanded. The first and second (20, 22) are configured such that the second (22) forms a blood-impervious seal with the first (20) around the first lateral opening (34) when the second stent-graft (22) is disposed therethrough, and the first and the second (20, 22) are radially-expanded. The second and the third (22, 24) are configured such that the third (24) forms a blood-impervious seal with the second (22) around the second lateral opening (44) when the third (24) is disposed therethrough, and the second and third (22, 24) are radially-expanded. Other embodiments also described.
    Type: Application
    Filed: November 30, 2009
    Publication date: January 10, 2013
    Applicant: ENDOSPAN LTD.
    Inventors: Alon Shalev, Sagi Raz, Rafi Benary
  • Publication number: 20120330399
    Abstract: A stent-graft (20) is provided, which is configured to initially be placed in a delivery shaft (40) in a radially-compressed state, and which comprises a support structure (36) and a covering element (38). The support structure (36) has proximal and distal ends, and is shaped so as to define at least a coupling portion (30), which 5 is configured to transition to a partially-radially-expanded state upon deployment of the stent-graft (20) from the delivery shaft (40), in which state the coupling portion (30) defines a sharp tip (34) at the proximal end of the support structure (36). The covering element (38) is securely attached to and covers at least a portion of the support structure (36). A 10 coupling-end expansion tool (100) is configured to transition the coupling portion (30) from the partially-radially-expanded state to a more-radially-expanded state. Other embodiments are also described.
    Type: Application
    Filed: December 2, 2010
    Publication date: December 27, 2012
    Applicant: ENDOSPAN LTD.
    Inventors: Alon Shalev, Sagi Raz
  • Publication number: 20120323305
    Abstract: A stent (120) has proximal and distal ends (140, 142), and is configured to assume radially-compressed and radially-expanded states. The stent (120) comprises a plurality of circumferential bands (122) disposed about a longitudinal axis (123) of the stent (120), each of which bands (122) comprises a plurality of struts (124) connected to one another. At least one of the bands (122) is shaped so as to define a plurality of distally-directed peaks (126) alternating with a plurality of proximally-directed troughs (128), and one or more strain-concentration modules (132). Each of the modules (132) has a central axis (156) parallel to the longitudinal axis (123) of the stent (120), and comprises: (a) an open loop section (150), which comprises one of the distally-directed peaks (126); (b) a primary neck section (152); and (c) a secondary section (154). Other embodiments are also described.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: ENDOSPAN LTD.
    Inventors: Raphael Benary, Alon Shalev
  • Publication number: 20120316634
    Abstract: An endovascular tool is provided, which includes a longitudinal delivery shaft and a fin coupled to the delivery shaft. The fin is configured to assume a compressed state for endoluminal delivery, and an expanded state for endoluminal deployment, in which state the fin is configured to pivot around an axis of rotation. Other embodiments are also described.
    Type: Application
    Filed: December 27, 2010
    Publication date: December 13, 2012
    Applicant: ENDOSPAN LTD.
    Inventors: Alon Shalev, Sagi Raz
  • Publication number: 20120310324
    Abstract: An endovascular prosthesis (100) comprises a structural member (131), which defines, when the prosthesis (100) assumes an expanded state, a substantially tubular structure (111), and two wings (107, 108), which are coupled to a proximal end (118) of the tubular structure (111). If the wings (107, 108) are placed within and in contact with a right circular cylinder (102), which has a diameter of between 2.5 and 3 cm, such that a distal end (119) of the tubular structure (111) is outside the cylinder (102): (a) an axis (116) of the tubular structure (111) defines an angle of between 75 and 90 degrees with an axis (106) of the cylinder (102), (b) the wings (107, 108) at least partially occupy respective arcs (103A, 103B) of the cylinder (102), at least one of which arcs (103A, 103B) has an angle of no more than 180 degrees, and (c) the wings (107, 108) have respective greatest axial lengths (104) along the cylinder axis (106), at least one of which is at least 1.
    Type: Application
    Filed: November 4, 2010
    Publication date: December 6, 2012
    Applicant: ENDOSPAN LTD.
    Inventors: Raphael Benary, Alon Shalev
  • Patent number: 8317856
    Abstract: A multiple-component expandable endoluminal system for treating a lesion at a bifurcation including a self expandable tubular root member having a side-looking engagement aperture, a self expandable tubular trunk member comprising a substantially blood impervious polymeric liner secured therealong; both having a radially compressed state adapted for percutaneous intraluminal delivery and a radially expanded state adapted for endoluminal support.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: November 27, 2012
    Assignee: Endospan Ltd.
    Inventors: Alon Shalev, Rafi Benary
  • Publication number: 20120179236
    Abstract: An endovascular prosthesis (10) includes first and second endovascular stent-grafts (20, 22), which include respective first and second stent bodies (32, 108), and respective first and second fluid flow guides (102, 109). The first stent-graft (20) is shaped to define an interface portion (103) having a distal interface end (34) that meets a proximal end (36) of the first stent body (32) at a peripheral juncture (104). The second stent-graft (22) defines an interface aperture (110), within which part of the interface portion (103) is positionable. The interface portion (103) comprises engagement support members (105) disposed around a periphery thereof, which are configured to transition from an initial state to (b) a sealing state, thereby sealingly coupling the first stent-graft (20) to the second stent-graft (22) when the part of the interface portion (103) is positioned within the interface aperture (110). Other embodiments are also described.
    Type: Application
    Filed: July 14, 2010
    Publication date: July 12, 2012
    Applicant: ENDOSPAN LTD.
    Inventors: Rafael Benary, Alon Shalev
  • Publication number: 20120172929
    Abstract: A generally tubular endovascular prosthesis (100) is configured to transition between a radially-compressed state and a radially-expanded state. The prosthesis (100) includes a first generally cylindrical structural portion (101), which has first and second ends (102, 103), and a second generally cylindrical structural portion (104), which has first and second ends (105, 106). The first end (102) of the first structural portion (101) and the first end (105) of the second structural portion (104) meet each other at a juncture (107).
    Type: Application
    Filed: July 8, 2010
    Publication date: July 5, 2012
    Applicant: ENDOSPAN LTD.
    Inventor: Alon Shalev
  • Publication number: 20120150274
    Abstract: An endovascular sealing stent-graft is configured to initially be positioned in a delivery catheter in a radially-compressed state, and to assume a radially-expanded state upon being deployed from the delivery catheter. The stent-graft includes a structural member, which includes a plurality of structural stent elements, and which, when the stent-graft assumes the radially-expanded state, has a generally tubular shape, and is shaped so as to define at least two elongated indentations, each of which extends rostrally to a rostral end of the structural member, and is tapered in a caudal direction until the indentation converges with the generally tubular shape of the structural member, and each of which has an axial length of at least 2 cm. The stent-graft further includes a fluid flow guide, which is coupled to at least a portion of the structural member, and covers at least a portion of each of the elongated indentations.
    Type: Application
    Filed: June 23, 2010
    Publication date: June 14, 2012
    Applicant: ENDOSPAN LTD.
    Inventors: Alon Shalev, Rafi Benary
  • Publication number: 20110208289
    Abstract: A stent-graft includes a graft and annular stent springs, including first, second, and third tapered stent springs, coupled to a generally tubular portion of the graft. Each of the tapered springs include stent cells that circumferentially taper to a set of one or more circumferentially-adjacent narrowest stent cells within the spring. The first and second tapered springs axially adjacent; the second and third tapered stent springs are axially adjacent. The narrowest stent cell sets of the first and second springs are rotationally positioned on the portion of the graft with a non-zero relative angle shift therebetween, as are the narrowest stent cell sets of the second and third springs.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 25, 2011
    Applicant: ENDOSPAN LTD.
    Inventor: Alon SHALEV
  • Publication number: 20100292774
    Abstract: A system for treating an aneurysmatic abdominal aorta, comprising (a) an extra-vascular wrapping (EVW) comprising (i) at least one medical textile member adapted to at least partially encircle a segment of aorta in proximity to the renal arteries, and (ii) a structural member, wherein EVW is adapted for laparoscopic delivery, and (b) an endovascular stent-graft (ESG) comprising (i) a compressible structural member, and (ii) a substantially fluid impervious fluid flow guide (FFG) attached thereto. Also described is an extra-vascular ring (EVR) adapted to encircle the neck of an aortic aneurysm. Further described are methods for treating an abdominal aortic aneurysm, comprising laparoscopically delivering the extra-vascular wrapping (EVW) and endovascularly placing an endovascular stent-graft (ESG). Also described are methods to treat a type I endoleak.
    Type: Application
    Filed: December 15, 2008
    Publication date: November 18, 2010
    Applicant: ENDOSPAN LTD.
    Inventor: Alon Shalev