Patents Assigned to Endress + Hauser Flowtec AG
  • Patent number: 11662289
    Abstract: An apparatus for measuring viscosities of fluids is described, comprising: a measuring system (1) having at least one measuring tube (5), which in measurement operation is filled with a fluid or through which fluid is flowing, and which has at least one tube section (4, 7) excitable to execute oscillations; an exciter system (1) for exciting at least two wanted oscillation modes of different frequencies, at each of which at least one of the tube sections (4, 7) is excited to execute oscillations, especially resonant oscillations; a sensing system (3), which is embodied in such a manner that it determines for the wanted oscillation modes excited in measurement operation, in each case, a frequency and a damping, especially a frequency, an amplitude and a damping, of a resulting oscillation of at least one tube section (4, 7) excited to execute oscillations of one of the wanted oscillation modes, and an evaluation system (15), which is embodied in such a manner that it determines based on calibration data stored
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: May 30, 2023
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Martin Josef Anklin, Christof Huber
  • Patent number: 11635320
    Abstract: Disclosed is a device for measuring fill level of a liquid comprising: a measuring tube having a tube wall extending between first and second terminal openings and which surrounds a volume for guiding the liquid, wherein a tube axis extends between the two tube openings; a first conductor extending at least sectionally around the volume and is electrically insulated from the volume; a second conductor extending at least sectionally around the volume and is electrically insulated from the first conductor and from the volume, wherein the two conductors extend essentially in parallel with one another and form a waveguide for microwaves; an HF circuit for in-coupling a microwave signal into the waveguide and for receiving reflected microwave signals out-coupled from the waveguide; an operating and evaluating circuit for determining fill level of the liquid in the measuring tube based on received microwave signals.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: April 25, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Stefan Pflüger, Winfried Mayer
  • Patent number: 11629982
    Abstract: The present disclosure relates to a magnetic-inductive flowmeter for measuring flow velocity of a medium, comprising a measuring tube; an apparatus positioned toward a cross-section of the measuring tube for producing a magnetic field extending perpendicular to a longitudinal direction, wherein the apparatus includes a segment coupling the magnetic field into the medium, wherein the segment surrounds the measuring tube over a first angle; and an electrode system having at least two electrode pairs adapted to register a voltage induced in the medium, wherein a second angle defines a minimum circular sector in which the electrodes located on one side of the measuring tube are distributed, wherein first and second angles are so matched to one another that the flowmeter is insensitive to departures from a rotationally symmetric flow such that the flowmeter in a test measurement has a measurement error of flow velocity less than 1.0%.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: April 18, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventor: Simon Mariager
  • Patent number: 11614353
    Abstract: A thermal flow measuring device comprising a sensor with a metal sensor housing, the sensor housing including at least a first and a second pin sleeve extending from a base, each pin sleeve having a longitudinal axis and an end face, the two pin sleeves defining a connecting axis, wherein in the first pin sleeve a first heater is arranged and in the second pin sleeve a temperature sensor is arranged, wherein the sensor housing includes at least a third pin sleeve, having a second heater, and a flow obstruction embodied such that the third pin sleeve is arranged in a first flow direction at least partially in the flow shadow of the flow obstruction, wherein the first flow direction extends at an angle of 80-100° to the connecting axis and lies on a plane perpendicular to the longitudinal axes of the first and second pin sleeves.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 28, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hanno Schultheis, Alexander Grün, Emioni Papadopoulou, Stephan Gaberthüel, Martin Barth, Panagiotis Papathanasiou
  • Patent number: 11598657
    Abstract: A measurement system includes: a tube; a bluff body, situated in the lumen of the tube, for generating vortices in a flowing fluid such that a Karman vortex street is formed downstream of the bluff body; a vortex sensor, having a mechanical resonant frequency, for providing a vortex sensor signal which changes over time and contains a first component representing the vortex shedding frequency and which contains a second component representing the mechanical resonant frequency of the vortex sensor; and transducer electronics for evaluating the at least one vortex sensor signal and configured to do the following: to determine vortex frequency measurement values representing the shedding frequency using the first component and, if the first component is not present, not to provide flow parameter measurement values and to generate a message indicating the current flow speed is not lower than the current acoustic velocity of the flowing fluid.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: March 7, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Marc Hollmach, Michel Wagner, Rainer Höcker
  • Patent number: 11592133
    Abstract: An adapter includes several connecting nozzles. Free nozzle ends of the connecting nozzles are adapted to be connected to line ends of fluid lines. The adapter includes, for guiding flowing fluid in and then out, two mutually separated, tubular flow channels. Moreover, the adapter includes a projection, which extends from the nozzle end with a length to a free projection end remote therefrom. A fluid line system formed by means of the adapter comprises, furthermore, a fluid line with, enveloped by a wall, a lumen. The fluid line can be connected with its line end to the connecting nozzle of the adapter in such a manner that the projection protrudes inwardly into the lumen of the fluid line to form two tubular chambers of the fluid line mutually separated by the projection and adapted for guiding through flowing fluid.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: February 28, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Holger Bernhard, Michael Lambrigger, Gebhard Gschwend, Christian Matt
  • Patent number: 11579060
    Abstract: Disclosed is a method for determining of fat content of milk having variable solids fractions and flowing with variable gas content in a pipeline. The method includes ascertaining a velocity of sound and an average density value for the milk based on eigenfrequencies of at least two bending oscillation wanted modes of measuring tubes of a densimeter arranged in the pipeline. The method further includes ascertaining a static pressure in the pipeline; a gas volume fraction based on the velocity of sound; the average density; the pressure; a density of the milk without gas content based on the average density and the gas volume fraction; and a permittivity of the milk based on a propagation velocity and/or an absorption of microwaves in the milk. The fat fraction is calculated based on the density of the milk without gas content and on the effective permittivity.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: February 14, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Stefan Pflüger, Wolfgang Drahm, Hao Zhu
  • Patent number: 11573111
    Abstract: The measuring system includes a transducer apparatus with two tubes. Each tube is adapted to be flowed through by a fluid from an inlet end toward an outlet end and to be caused to vibrate. An electromechanical exciter mechanism excites and maintains mechanical oscillations of each of the tubes, and a sensor arrangement registers mechanical oscillations of at least one of the tubes. The transducer apparatus includes two temperature sensors each being mechanically and thermally conductively coupled with a wall of the tube, wherein each of the temperature sensors registers a measuring point temperature, and converts such into a temperature measurement signal temperature. A measuring and operating electronics (ME) generates a transducer temperature measured value representing a transducer apparatus temperature so that a magnitude of the transducer temperature measured value is greater than a magnitude of the measuring point temperature and less than a magnitude of the measuring point temperature.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: February 7, 2023
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Alfred Rieder, Gerhard Eckert, Ennio Bitto, Hao Zhu
  • Patent number: 11550342
    Abstract: A gas separator for separating a multiphase medium containing a gas and a liquid includes a tubular basic unit having a longitudinal axis, an intake for a gaseous medium, a liquid outlet and a gas outlet. The tubular basic unit has an intake region and a discharge region. The gas separator includes, between the intake region and the discharge region, a weir having a guiding surface, over which the medium can flow to form a shallow water region. The gas contained in the medium can escape from the medium in the shallow water region and be led away from the gas separator through the gas outlet. The disclosure is also directed to an apparatus for registering flow of at least one component of a multiphase medium.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: January 10, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Guido Horoba, Helmut Zeislmeier, Wolfgang Drahm, Rainer Höcker
  • Patent number: 11543277
    Abstract: Disclosed is a sensor arrangement on a process installation comprising at least two sensor tiles, wherein each sensor tile comprises a support and a plurality of sensors arranged on the support for determining a physical or chemical variable of a measuring medium, a process characteristic of the measuring medium, and/or a state of the process installation. A first sensor tile comprises a control unit having a transmit and receive module for data exchange with a control unit of a second sensor tile. The first control unit of the first sensor tile and/or a second control unit allocated to the sensor arrangement is designed to weight the values determined by each sensor tile. Weighting may be a function of the measured value variations of the sensor tile, the position of the sensor tile in the process installation, and/or the function of the sensor tile.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: January 3, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Thomas Wilhelm, Wolfgang Drahm, Alfred Rieder, Peter Klöfer, Thomas Moore
  • Patent number: 11543337
    Abstract: The method of the present disclosure for signaling a standard frequency of a density meter comprises: exciting bending vibrations of a measurement tube at an excitation mode working frequency, the working frequency depending on the density of a medium conducted in the measurement tube and on a disturbance variable; determining a characteristic value of the working frequency; determining a value representing the disturbance variable; calculating a corrected density value of the medium as a function of the characteristic value of the working frequency and of the value representing the disturbance variable; calculating a characteristic value of the standard frequency as a function of the corrected density value, the standard frequency being the frequency which produces the corrected density value in a calculation of the density using a frequency-dependent standard function which is not dependent on the disturbance variable; and providing a signal representing the standard frequency.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: January 3, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventor: Alfred Rieder
  • Patent number: 11530967
    Abstract: The present disclosure relates to a transducer comprising a tube, a converter unit, an electromechanical exciter arrangement for stimulating and sustaining forced mechanical vibrations of the converter unit, and a sensor arrangement for detecting mechanical vibrations of the converter unit and for generating a vibration signal representing mechanical vibrations of the converter unit. The converter unit includes two connection elements connected to a displacer element and is inserted into the tube and connected thereto. The converter unit is configured as to be contacted by a fluid flowing through the tube and enabled to vibrate such that the connection elements and the displacer elements are proportionately elastically deformed. The transducer can be a constituent of a measuring system adapted to measure and/or monitor a flow parameter of the flowing fluid and further includes an electronic measuring and operating system coupled to the exciter arrangement and the sensor arrangement of the transducer.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 20, 2022
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Ennio Bitto, Alfred Rieder, Yaoying Lin, Martin Josef Anklin
  • Patent number: 11493416
    Abstract: The present disclosure relates to a measurement tube including a tubular main body, which has a wall and a lumen, and a sensor holder, which is arranged on and integrally bonded to an outer lateral surface of the wall of the main body, opposite the lumen, the sensor holder configured to be mechanically connected to at least one sensor component for sensing at least one measurement variable of a measurement material located in the lumen. The sensor holder is at least partly produced by an additive manufacturing method directly on the lateral surface of the wall of the main body. In a method for producing such a measurement tube, liquefied material is applied to the outer lateral surface of the wall of the main body and allowed to resolidify there to form a part of the sensor holder, which part is integrally bonded to the wall of the main body.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 8, 2022
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Torsten Undi, Andreas Strub, Andris Kade
  • Patent number: 11473948
    Abstract: A magnetically inductive flowmeter includes a measuring tube having a tube axis and a tube wall; a magnet system for producing a magnetic field that extends perpendicularly to the tube axis; at least one pair of measuring electrodes for sensing an electrical voltage induced in the medium by the magnetic field; and an electronic measuring/operating circuit for operating the magnet system and the measuring electrodes. The magnet system includes a coil system having a coil having a coil core and further includes two pole shoes. The coil system includes a field guide-back, wherein a tangential fraction of the magnetic field in the coil relative to the measuring tube axis amounts to at least 90% of the total magnetic field. The field guide-back has a guide-back part that extends through the coil and forms the coil core of the coil.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: October 18, 2022
    Assignee: ENDRESS+HAUSER FLOWTEC AG
    Inventors: Simon Triebenbacher, Raphael Hess, Oliver Graf
  • Patent number: 11474092
    Abstract: A method for determining properties of a hydrocarbon-containing gas mixture includes determining a thermal conductivity value, density measurement, viscosity measurement, and temperature and pressure. The method also includes determining a hydrogen content of the gas mixture on the basis of the thermal conductivity value and the temperature and pressure, determining a density measurement and associated temperature and pressure, and determining the mean molar mass or standard density on the basis of the density measurement and the temperature and pressure. The method further includes determining the mean molar mass or standard density of a hydrogen-free residual gas mixture based on the mean molar mass or standard density and the hydrogen fraction, determining the Wobbe index of the residual gas mixture based on the viscosity measurement and the temperature and pressure, and determining a calorific value based on the mean molar mass or standard density and the Wobbe index.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: October 18, 2022
    Assignee: ENDRESS+HAUSER FLOWTEC AG
    Inventors: Christof Huber, Patrick Reith, Anastasios Badarlis
  • Patent number: 11448538
    Abstract: A clamp-on ultrasonic flowmeter includes a measuring tube, a pair of ultrasonic contact transducers, and an electronic measuring/operating circuit for operating the transducers. Each transducer includes a transducer element for generating and detecting ultrasonic signals and a coupling element. The transducer element is located on one side of the coupling element facing away from the measuring tube, and is designed to be acoustically coupled to the measuring tube via another side of the coupling element facing the measuring tube, and designed to transmit ultrasonic signals between the transducer element and measuring tube. The ultrasonic flowmeter comprises an adjusting device for at least one transducer for adjusting the transducer. The adjusting device is arranged and configured to modify at least one angle of the signal path with respect to the coupling face or a signal path length, wherein the adjusting device has at least two degrees of freedom.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: September 20, 2022
    Assignee: ENDRESS+HAUSER FLOWTEC AG
    Inventors: Achim Wiest, Oliver Brumberg, Andreas Berger
  • Patent number: 11441930
    Abstract: Disclosed is a tube configured to conduct a fluid flowing through the tube in a specified flow direction and for this purpose comprises a tube wall, which encloses a lumen of the tube, and an interference body, which is arranged within the tube but is nevertheless connected to the tube wall at an inner face of the tube wall facing the lumen. In the tube according to the present disclosure, the tube wall has a maximum wall thickness of more than 1 mm and at least two mutually spaced sub-segments with a respective wall thickness that deviates from said maximum wall thickness, wherein the sub-segment is positioned upstream of the interference body in the flow direction, and the sub-segment is positioned downstream of the sub-segment in the flow direction.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: September 13, 2022
    Assignee: ENDRESS+HAUSER FLOWTEC AG
    Inventors: Marc Hollmach, Christian Lais, Fabio Schraner, Oliver Popp
  • Patent number: D991945
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: July 11, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Johannes Sprenger, Markus Hoh, Daniel Wagner, Andreas Wiedmer, Kevin Martin
  • Patent number: D991946
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: July 11, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Johannes Sprenger, Markus Hoh, Daniel Wagner, Andreas Wiedmer, Kevin Martin
  • Patent number: D991965
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: July 11, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Johannes Sprenger, Markus Hoh, Daniel Wagner, Andreas Wiedmer, Kevin Martin