Patents Assigned to Ener-Core Power, Inc.
-
Patent number: 9057028Abstract: Described herein are gradual oxidation systems that receive and process solid, liquid, or gaseous fuels. The system can include a solid fuel gasifier that extracts and cleans gas fuel from a solid fuel. The system can also include a reaction chamber that receives the gas fuel and maintains a gradual oxidation process of the fuel. In some embodiments, liquids containing contaminants can be oxidized within the gradual oxidation chamber. Liquid fuels and gas fuels may be communicated to the oxidation chamber separately or in combination.Type: GrantFiled: May 25, 2011Date of Patent: June 16, 2015Assignee: ENER-CORE POWER, INC.Inventor: Edan D. Prabhu
-
Patent number: 9017618Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: April 28, 2015Assignee: Ener-Core Power, Inc.Inventors: Boris A. Maslov, Douglas Hamrin
-
Patent number: 8980192Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: March 17, 2015Assignee: Ener-Core Power, Inc.Inventor: Boris A. Maslov
-
Patent number: 8980193Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: March 17, 2015Assignee: Ener-Core Power, Inc.Inventors: Thomas Renau Denison, Boris A. Maslov
-
Patent number: 8926917Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: January 6, 2015Assignee: Ener-Core Power, Inc.Inventor: Boris A. Maslov
-
Patent number: 8893468Abstract: Fuel is oxidized with air in a pressurized reaction chamber containing water. Water, fuel, or both may be communicated into the reaction chamber in a gaseous state, a liquid state, or both. For example, a liquid mixture that includes the water and/or the fuel can be evaporated to form a gas mixture, and the gas mixture can be communicated into the reaction chamber. Additionally or alternatively, the liquid mixture that includes the water and/or the fuel can be communicated into the reaction chamber and evaporated in the reaction chamber. The water and the fuel may be communicated into the reaction chamber separately or in combination.Type: GrantFiled: March 15, 2011Date of Patent: November 25, 2014Assignee: Ener-Core Power, Inc.Inventor: Edan D. Prabhu
-
Patent number: 8844473Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: September 30, 2014Assignee: Ener-Core Power, Inc.Inventors: Mark Schnepel, Boris A. Maslov
-
Patent number: 8807989Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: August 19, 2014Assignee: Ener-Core Power, Inc.Inventors: Jeffrey Armstrong, Richard Martin, Douglas Hamrin, Joe Perry
-
Publication number: 20140202165Abstract: A fuel oxidizer system is operated in a first operating mode. In the first operating mode, a mixture that includes fuel from a fuel source is compressed in a compressor of the fuel oxidizer system; the fuel of the compressed mixture is oxidized in a reaction chamber of the fuel oxidizer system; and the oxidized fuel is expanded to generate rotational kinetic energy. The fuel oxidizer system is operated in a second operating mode. In the second operating mode, fuel from the fuel source is directed to bypass the compressor, and the fuel that bypassed the compressor is oxidized in the reaction chamber.Type: ApplicationFiled: March 20, 2014Publication date: July 24, 2014Applicant: ENER-CORE POWER, INC.Inventor: Edan PRABHU
-
Publication number: 20140196467Abstract: A mixture of air and fuel is received into a reaction chamber of a gas turbine system. The fuel is oxidized in the reaction chamber, and a maximum temperature of the mixture in the reaction chamber is controlled to be substantially at or below an inlet temperature of a turbine of the gas turbine system. The oxidation of the fuel is initiated by raising the temperature of the mixture to or above an auto-ignition temperature of the fuel. In some cases, the reaction chamber may be provided without a fuel oxidation catalyst material.Type: ApplicationFiled: March 17, 2014Publication date: July 17, 2014Applicant: ENER-CORE POWER, INC.Inventor: Edan PRABHU
-
Patent number: 8701413Abstract: A fuel oxidizer system is operated in a first operating mode. In the first operating mode, a mixture that includes fuel from a fuel source is compressed in a compressor of the fuel oxidizer system; the fuel of the compressed mixture is oxidized in a reaction chamber of the fuel oxidizer system; and the oxidized fuel is expanded to generate rotational kinetic energy. The fuel oxidizer system is operated in a second operating mode. In the second operating mode, fuel from the fuel source is directed to bypass the compressor, and the fuel that bypassed the compressor is oxidized in the reaction chamber.Type: GrantFiled: December 8, 2008Date of Patent: April 22, 2014Assignee: Ener-Core Power, Inc.Inventor: Edan Prabhu
-
Patent number: 8671658Abstract: A mixture of air and fuel is received into a reaction chamber of a gas turbine system. The fuel is oxidized in the reaction chamber, and a maximum temperature of the mixture in the reaction chamber is controlled to be substantially at or below an inlet temperature of a turbine of the gas turbine system. The oxidation of the fuel is initiated by raising the temperature of the mixture to or above an auto-ignition temperature of the fuel. In some cases, the reaction chamber may be provided without a fuel oxidation catalyst material.Type: GrantFiled: March 18, 2008Date of Patent: March 18, 2014Assignee: Ener-Core Power, Inc.Inventor: Edan Prabhu
-
Patent number: 8671917Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: March 18, 2014Assignee: Ener-Core Power, Inc.Inventor: Mark Schnepel
-
Patent number: 8621869Abstract: An air/fuel mixture is received in an oxidation reaction chamber. The air/fuel mixture has a low concentration of fuel, for example, below a lower explosive limit (LEL). The mixture is received while a temperature of a region in the oxidation reaction chamber is below a temperature sufficient to oxidize the fuel. The temperature of the region is raised to at least the oxidation temperature (the temperature sufficient to oxidize the fuel) primarily using heat energy released from oxidizing the air/fuel mixture in a different region in the reaction chamber.Type: GrantFiled: August 27, 2010Date of Patent: January 7, 2014Assignee: Ener-Core Power, Inc.Inventor: Edan Prabhu