Patents Assigned to Energy & Environmental Research Center
  • Patent number: 10989834
    Abstract: Disclosed are methods and apparatus for identifying non-metallic subterranean structures using amorphous metal markers associated with the structures. Some examples will include the amorphous metal in the form of one or more sections of an amorphous metal foil within a protective enclosure sufficient to physically isolate the amorphous metal foil from the surrounding Earth. The amorphous metal foil and enclosure may be in the form of a tape which either will be secured to, or placed proximate the subterranean structure, which may be, for example, a pipe or conduit, or other non-metallic structure.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 27, 2021
    Assignee: Energy & Environmental Research Center
    Inventor: Christopher Lee Martin
  • Patent number: 10808948
    Abstract: In various embodiments, the present invention relates to heat dissipation systems including a hygroscopic working fluid and methods of using the same. In various embodiments, the present invention provides a method for heat dissipation using a hygroscopic working fluid. The method can include transferring thermal energy from a heated process fluid to the hygroscopic working fluid in a process heat exchanger, to form a cooled process fluid. The method can include condensing liquid from a feed gas on a heat transfer surface of a feed gas heat exchanger in contact with the cooled process fluid, to form a cooled feed gas, the heated process fluid, and a condensate. The method can include dissipating thermal energy from the hygroscopic working fluid to a cooling gas composition with a fluid-air contactor. The method can include transferring moisture between the hygroscopic working fluid and the cooling gas composition with the fluid-air contactor.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: October 20, 2020
    Assignee: Energy & Environmental Research Center
    Inventor: Christopher Lee Martin
  • Patent number: 10782036
    Abstract: A heat dissipation system apparatus and method of operation using hygroscopic working fluid for use in a wide variety of environments for absorbed water in the hygroscopic working fluid to be released to minimize water consumption in the heat dissipation system apparatus for effective cooling in environments having little available water for use in cooling systems. The system comprises a low-volatility, hygroscopic working fluid to reject thermal energy directly to ambient air. The low-volatility and hygroscopic nature of the working fluid prevents complete evaporation of the fluid and a net consumption of water for cooling, and direct-contact heat exchange allows for the creation of large interfacial surface areas for effective heat transfer. Specific methods of operation prevent the crystallization of the desiccant from the hygrosopic working fluid under various environmental conditions.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: September 22, 2020
    Assignee: Energy & Environmental Research Center
    Inventor: Christopher L. Martin
  • Patent number: 10260761
    Abstract: A heat dissipation system apparatus and method of operation using hygroscopic working fluid for use in a wide variety of environments for absorbed water in the hygroscopic working fluid to be released to minimize water consumption in the heat dissipation system apparatus for effective cooling in environments having little available water for use in cooling systems. The system comprises a low-volatility, hygroscopic working fluid to reject thermal energy directly to ambient air. The low-volatility and hygroscopic nature of the working fluid prevents complete evaporation of the fluid and a net consumption of water for cooling, and direct-contact heat exchange allows for the creation of large interfacial surface areas for effective heat transfer. Specific methods of operation prevent the crystallization of the desiccant from the hygrosopic working fluid under various environmental conditions.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: April 16, 2019
    Assignee: Energy & Environmental Research Center Foundation
    Inventor: Christopher L. Martin
  • Patent number: 10254269
    Abstract: Various embodiments disclosed relate to methods and apparatus for sampling an oil composition. In various embodiments, the present invention provides a method of sampling one or more components of an oil composition. The method includes placing a fluid into a pressure chamber at a first pressure. The pressure chamber includes an oil composition therein. The oil composition contacts the fluid. The fluid includes at least one of a gas, a liquid, and a supercritical fluid. The method also includes taking a sample of at least one of the fluid and the oil composition from the pressure chamber.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: April 9, 2019
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: David J. Miller, Steven B. Hawthorne
  • Patent number: 9879522
    Abstract: Various embodiments disclosed relate to methods and apparatuses for determining a minimum miscibility pressure of a fluid with and oil composition. In various embodiments, the method can include placing a fluid into a pressure chamber at a first pressure. The pressure chamber can include at least one capillary tube having one end disposed in an oil composition in the pressure chamber. The fluid can include at least one of a gas, a liquid, and a supercritical fluid. The method can include measuring a height of the oil composition in at least one of the capillary tubes. The method can include repeating the measuring for at least one cycle using a second pressure different than the first pressure. The method can include determining the minimum miscibility pressure of the oil composition with the fluid by extrapolating from the two or more measurements.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: January 30, 2018
    Assignee: Energy and Environmental Research Center Foundation
    Inventors: Steven B. Hawthorne, David J. Miller
  • Patent number: 9862008
    Abstract: A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: January 9, 2018
    Assignee: Energy and Environmental Research Center Foundation
    Inventors: Jay C. Almlie, Stanley J. Miller
  • Patent number: 9851339
    Abstract: Various embodiments disclosed relate to methods and apparatuses for determining a minimum miscibility pressure of a fluid with and oil composition. In various embodiments, the method can include placing a fluid into a pressure chamber at a first pressure. The pressure chamber can include at least one capillary tube having one end disposed in an oil composition in the pressure chamber. The fluid can include at least one of a gas, a liquid, and a supercritical fluid. The method can include measuring a height of the oil composition in at least one of the capillary tubes. The method can include repeating the measuring for at least one cycle using a second pressure different than the first pressure. The method can include determining the minimum miscibility pressure of the oil composition with the fluid by extrapolating the pressure at a height of the oil in the at least one capillary tube of zero from the two or more measurements of the height of the oil composition in the at least one capillary tube.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: December 26, 2017
    Assignee: Energy and Environmental Research Center Foundation
    Inventors: Steven B. Hawthorne, David J. Miller
  • Patent number: 9675931
    Abstract: A system and method is provided for the removal of mercury from flue gas. Effective removal of mercury is obtained by oxidation of elemental mercury, with highly reactive halogen species derived from dissociation of halogen compounds at moderate temperatures brought into contact with the flue gas with or without the addition of carbon.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: June 13, 2017
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Michael J. Holmes, John H. Pavlish, Edwin S. Olson
  • Patent number: 9669355
    Abstract: The present invention relates to activated carbon sorbents including nitrogen. In various embodiments, the present invention provides an activated carbon sorbent including a halogen- or halide-promoted activated carbon, the activated carbon sorbent particles including nitrogen in a surface layer of the sorbent particles. In various embodiments, the present invention provides a method of reducing the pollutant content in a pollutant-containing gas using the activated carbon sorbent. In various embodiments, the activated carbon sorbent can remove mercury from a mercury-containing gas that includes sulfur(VI) such as SO3 more efficiently than other sorbents.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: June 6, 2017
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Edwin S. Olson, John Henry Pavlish
  • Patent number: 9662629
    Abstract: The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: May 30, 2017
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Edwin S. Olson, John Henry Pavlish
  • Patent number: 9630840
    Abstract: Various embodiments disclosed relate to cooling shale gas via reaction of methane, light hydrocarbons, or a combination thereof, with water. In various embodiments, the present invention provides a method of cooling syngas. The method includes contacting the hot syngas with methane or light hydrocarbons. The hot syngas includes water and has a temperature of about 800° C. to about 3000° C. The contacting is effective to endothermically react the methane or light hydrocarbons with the water in the hot syngas to form carbon monoxide and hydrogen and to provide a cooled syngas having a lower temperature than the hot syngas.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: April 25, 2017
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Joshua J. Stanislowski, Michael J. Holmes, Michael L. Swanson
  • Patent number: 9468886
    Abstract: A promoted carbon and/or non-carbon base sorbent are described that are highly effective for the removal of mercury from flue gas streams. The promoted sorbent comprises a carbon and/or non-carbon base sorbent that has reacted with and contains forms of halogen and halides. Optional components may be added to increase and/or preserve reactivity and mercury capacity. These may be added directly with the base sorbent, or in-flight within a gas stream (air, flue gas, etc.), to enhance base sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The promoted sorbent can be regenerated and reused. Base sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active base sorbent into the mercury contaminated gas stream are described.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: October 18, 2016
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Edwin S. Olson, Michael J. Holmes, John H. Pavlish
  • Patent number: 9272291
    Abstract: A device includes a chamber having an air inlet and an air outlet. The device includes a plurality of stages including at least a first stage adjacent a second stage. The plurality of stages are disposed in the chamber and each stage has a plurality of discharge electrodes disposed in an interior region and is bounded by an upstream baffle on an end proximate the air inlet and bounded by a downstream baffle on an end proximate the air outlet. Each stage has at least one sidewall between the upstream baffle and the downstream baffle. The sidewall is configured as a collection electrode and has a plurality of apertures disposed along a length between the upstream baffle and the downstream baffle. The upstream baffle of the first stage is positioned in staggered alignment relative to the upstream baffle of the second stage and the downstream baffle of the first stage are positioned in staggered alignment relative to the downstream baffle of the second stage.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 1, 2016
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Stanley J. Miller, Jay C. Almlie, Ye Zhuang
  • Patent number: 9155997
    Abstract: A system and method is provided for the removal of mercury from flue gas. Effective removal of mercury is obtained by oxidation of elemental mercury, with highly reactive halogen species derived from dissociation of halogen compounds at moderate temperatures brought into contact with the flue gas with or without the addition of carbon.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: October 13, 2015
    Assignee: ENERGY & ENVIRONMENTAL RESEARCH CENTER FOUNDATION
    Inventors: Michael J. Holmes, John H. Pavlish, Edwin S. Olson
  • Patent number: 9011805
    Abstract: The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 21, 2015
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Edwin S. Olson, John H. Pavlish
  • Patent number: 9005422
    Abstract: Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 14, 2015
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Junhua Jiang, Ted R. Aulich, Alexey V. Ignatchenko
  • Patent number: 8882926
    Abstract: A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: November 11, 2014
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Jay C. Almlie, Stanley J. Miller
  • Publication number: 20140255279
    Abstract: The present invention relates to activated carbon sorbents including nitrogen. In various embodiments, the present invention provides an activated carbon sorbent including a halogen- or halide-promoted activated carbon, the activated carbon sorbent particles including nitrogen in a surface layer of the sorbent particles. In various embodiments, the present invention provides a method of reducing the pollutant content in a pollutant-containing gas using the activated carbon sorbent. In various embodiments, the activated carbon sorbent can remove mercury from a mercury-containing gas that includes sulfur(VI) such as SO3 more efficiently than other sorbents.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 11, 2014
    Applicant: Energy & Environmental Research Center Foundation
    Inventors: Edwin S. Olson, John Henry Pavlish
  • Patent number: 8821819
    Abstract: A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: September 2, 2014
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Edwin S. Olson, Michael J. Holmes, John Henry Pavlish