Patents Assigned to Energy Materials, Inc.
  • Patent number: 10522834
    Abstract: A multiple-element composite material for negative electrodes, a preparation method therefor, and a lithium-ion battery using the negative electrode material. The lithium-ion battery uses multiple-element composite material for negative electrodes has a core-shell structure containing multiple shell layers. The inner core consists of graphite and nano-active matter coating the surface of the graphite. The outer layers of the inner core are in order: the first shell layer is of an electrically conductive carbon material, the second shell layer is of a nano-active matter, and the third shell layer is an electrically conductive carbon material coating layer.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: December 31, 2019
    Assignee: Shenzhen BTR New Energy Materials Inc.
    Inventors: Min Yue, Peng He, Sheng Li, Jianguo Ren, Youyuan Huang
  • Patent number: 10170753
    Abstract: The present invention relates to a nano-silicon composite negative electrode material, including graphite matrix and nano-silicon material homogeneously deposited inside the graphite matrix, wherein the nano-silicon composite negative electrode material is prepared by using silicon source to chemical-vapor deposit nano-silicon particles inside hollowed graphite. The nano-silicon composite negative electrode material of the present invention has features of high specific capacity (higher than 1000 mAh/g), high initial charge-discharge efficiency (higher than 93%) and high conductivity. The preparation process of the present invention is easy to operate and control, and has low production cost and is suitable for industrial production.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: January 1, 2019
    Assignee: Shenzhen BTR New Energy Materials Inc.
    Inventors: Jianguo Ren, Min Yue, Youyuan Huang, Xueqin He
  • Patent number: 10170754
    Abstract: The present invention relates to a silicon monoxide composite negative electrode material, which comprises silicon monoxide substrate. Nano-Silicon material uniformly deposited on the silicon monoxide substrate and nanoscale conductive material coating layer on the surface of the silicon monoxide/Nano-Silicon. The preparation method of the silicon monoxide composite negative electrode material includes Nano-Silicon chemistry vapor deposition, nanoscale conductive material coating modification, screening and demagnetizing. The silicon monoxide composite negative electrode material has properties of high specific capacity (>1600 mAh/g), high charge-discharge efficiency of the first cycle (>80%) and high conductivity.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 1, 2019
    Assignee: Shenzhen BTR New Energy Materials Inc.
    Inventors: Jianguo Ren, Dexin Yu, Min Yue
  • Patent number: 10096822
    Abstract: A lithium ion battery graphite negative electrode material and preparation method thereof. The lithium ion battery graphite negative electrode material is a composite material including graphite substrates, surface coating layers coated on the graphite substrates and carbon nanotubes and/or carbon nanofibers grown in situ on the surface of the surface coating layers. The preparation method thereof includes, in solid phase or liquid phase circumstance, the coated carbon material precursor forms the surface coating layer of amorphous carbon by carbonization, and then carbon nanotubes and/or carbon nanofibers having high conductive performance are formed on the surface of the surface coating layers by vapor deposition. This coating mode of the combination of solid phase with gas phase or of liquid phase and gas phase makes the amorphous carbon formed on the surface of the graphite substrates more uniform and dense.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: October 9, 2018
    Assignee: SHENZHEN BRT NEW ENERGY MATERIALS INC.
    Inventors: Min Yue, Yan Liang, Huiqing Yan, Minghua Deng, Youyuan Huang
  • Patent number: 9799879
    Abstract: The present invention relates to a cathode material of Lithium-Nickel-Cobalt-Aluminum composite oxide, a method of fabricating the same, and a lithium ion battery including the same. The composite cathode material has a core-shell structure, wherein the core portion is made of LiNi1-x-yCoxAlyO2 which is washed with an alcohol and organic acid-mixed solution, wherein 0<x?0.2, 0<y?0.1; the shell is metal oxide layer. In the present invention, the composite cathode material is fabricated by a combined method, wherein the base material is washed with an alcohol and organic acid-mixed solution and the shell layer material is coated by spray drying. The composite cathode material of the present invention has low content of lithium impurities and excellent high-temperature cycling and storage performance.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: October 24, 2017
    Assignee: Shenzhen BTR New Energy Materials Inc.
    Inventors: Shunyi Yang, Rusheng Fu, Youyuan Huang
  • Patent number: 9440861
    Abstract: The present invention discloses a method for modification of a lithium ion battery positive electrode material. The method comprises the following steps: (1) mixing organic acid and alcohol to obtain an organic solution; (2) adding positive electrode material into the organic solution to obtain a suspension; (3) washing with alcohol solvent after centrifugal separation; (4) drying treatment; the positive electrode material is a nickel-based metal oxide positive electrode material LiNixM1-xO2, wherein 0.5?x<1 and M is one or two selected from the group consisting of Co, Mn, Al, Cr, Mg, Cu, Ti, Mg, Zn, Zr and V.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: September 13, 2016
    Assignee: Shenzhen BTR New Energy Materials Inc.
    Inventors: Min Yue, Shunyi Yang, Youyuan Huang, Jianguo Ren, Lin Cheng
  • Publication number: 20150099174
    Abstract: The present invention relates to a silicon monoxide composite negative electrode material, which comprises silicon monoxide substrate. Nano-Silicon material uniformly deposited on the silicon monoxide substrate and nanoscale conductive material coating layer on the surface of the silicon monoxide/Nano-Silicon. The preparation method of the silicon monoxide composite negative electrode material includes Nano-Silicon chemistry vapour deposition, nanoscale conductive material coating modification, screening and demagnetizing. The silicon monoxide composite negative electrode material has properties of high specific capacity (>1600 mAh/g), high charge-discharge efficiency of the first cycle (>80%) and high conductivity.
    Type: Application
    Filed: May 6, 2014
    Publication date: April 9, 2015
    Applicant: Shenzhen BTR New Energy Materials Inc.
    Inventors: Jianguo Ren, Dexin Yu, Min Yue
  • Patent number: 8993170
    Abstract: A composite carbon material of negative electrode in lithium ion, which is made of composite graphite, includes a spherical graphite and a cover layer, wherein the cover layer is pyrolytic carbon of organic substance. Inserted transition metal elements are contained between layers of graphite crystal. Preparation of the negative electrode includes the steps of: crushing graphite, shaping to form a spherical shape, purifying treatment, washing, dewatering and drying, dipped in salt solution doped by transition metal in multivalence, mixed with organic matter, covering treatment, and carbonizing treatment or graphitization treatment. The negative electrode provides advantages of reversible specific capacity larger than 350 mAh/g, coulomb efficiency higher than 94% at first cycle, conservation rate for capacity larger than 8-% in 500 times of circulation.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: March 31, 2015
    Assignee: BTR New Energy Materials Inc.
    Inventors: Min Yue, Wanhong Zhang
  • Publication number: 20140339464
    Abstract: The present invention discloses a method for modification of a lithium ion battery positive electrode material. The method comprises the following steps: (1) mixing organic acid and alcohol to obtain an organic solution; (2) adding positive electrode material into the organic solution to obtain a suspension; (3) washing with alcohol solvent after centrifugal separation; (4) drying treatment; the positive electrode material is a nickel-based metal oxide positive electrode material LiNixM1?xO2, wherein 0.5?x<1 and M is one or two selected from the group consisting of Co, Mn, Al, Cr, Mg, Cu, Ti, Mg, Zn, Zr and V.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 20, 2014
    Applicant: SHENZHEN BTR NEW ENERGY MATERIALS INC.
    Inventors: Min Yue, Shunyi Yang, Youyuan Huang, Jianguo REN, Lin Cheng
  • Publication number: 20140302394
    Abstract: A lithium ion battery graphite negative electrode material and preparation method thereof. The lithium ion battery graphite negative electrode material is a composite material including graphite substrates, surface coating layers coated on the graphite substrates and carbon nanotubes and/or carbon nanofibers grown in situ on the surface of the surface coating layers. The preparation method thereof includes, in solid phase or liquid phase circumstance, the coated carbon material precursor forms the surface coating layer of amorphous carbon by carbonization, and then carbon nanotubes and/or carbon nanofibers having high conductive performance are formed on the surface of the surface coating layers by vapor deposition. This coating mode of the combination of solid phase with gas phase or of liquid phase and gas phase makes the amorphous carbon formed on the surface of the graphite substrates more uniform and dense.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 9, 2014
    Applicant: SHENZHEN BTR NEW ENERGY MATERIALS INC
    Inventors: Min Yue, Yan Liang, Huiqing Yan, Minghua Deng, Youyuan Huang
  • Publication number: 20090136849
    Abstract: A composite carbon material of negative electrode in lithium ion, which is made of composite graphite, includes a spherical graphite and a cover layer, wherein the cover layer is pyrolytic carbon of organic substance. Inserted transition metal elements are contained between layers of graphite crystal. Preparation of the negative electrode includes the steps of: crushing graphite, shaping to form a spherical shape, purifying treatment, washing, dewatering and drying, dipped in salt solution doped by transition metal in multivalence, mixed with organic matter, covering treatment, and carbonizing treatment or graphitization treatment. The negative electrode provides advantages of reversible specific capacity larger than 350 mAh/g, coulomb efficiency higher than 94% at first cycle, conservation rate for capacity larger than 8-% in 500 times of circulation.
    Type: Application
    Filed: March 29, 2006
    Publication date: May 28, 2009
    Applicant: BTR New Energy Materials Inc.
    Inventors: Min Yue, Wanhong Zhang
  • Patent number: 4085999
    Abstract: A transparent thermal insulating system having controllable transmissivity to visible radiation comprising a first layer generally transparent to visible radiation, a second layer generally transparent to visible radiation and spaced from the first layer; partition means for separating the space between the layers into compartments; a thermal radiation suppression device for suppressing thermal radiation transmission; and a variable transparency thermal control device for controlling transmisson of visible radiation as a function of temperature.
    Type: Grant
    Filed: April 8, 1976
    Date of Patent: April 25, 1978
    Assignee: Energy Materials, Inc.
    Inventor: Day Chahroudi