Abstract: This invention relates to a novel catalyst for reforming gasoline comprising a low valence titanium, vanadium and/or chromium metallic component composited with a non-oxidizing high surface area support. The low valence metallic component is present in divalent form or as a combination of the metallic state and the divalent form - preferably as a chloride and/or bromide. The preferred support is a high surface area coke.
Abstract: This invention relates to a method of reforming gasoline to raise the octane number thereof utilizing a novel catalyst comprising a low valence chromium metallic component composited with a non-oxidizing high surface area support. The low valence metallic component is present in divalent form or as a combination of the metallic state and the divalent form--preferably as a chloride and/or bromide. The preferred support is a high surface area coke.
Abstract: A method for the treatment of an aqueous effluent slime derived from a tar sand extraction process is disclosed. The effluent slime pH is adjusted to an acidic pH and treated with an anionic surface active agent to create flocculation of solid asphaltic material entrained within the slime. A solvent solution comprising chlorinated hydrocarbon and a solvent therefor is added so that upon centrifuging of the treated slime three physical layers of material comprising (1) water; (2) asphaltics in the solvent solution and (3) clay are formed.
Abstract: A portion of higher O.sub.2 content lignite or brown coal is mixed with bituminous coal to provide exothermic conditions and reduce extraneous heat to the liquefaction reactor. In addition, with a crude oil carrying stream for the coal to the reactor there can be conversion at the controlled heating of 380.degree. to 400.degree. C., and in the presence of H.sub.2 and CO at 100 to 200 atmospheres a maximizing of distillate from the crude and a high conversion of coal to liquified distillate.
Abstract: A more efficient separation of asphaltic materials from the heptane soluble components in liquified coal and other liquified solid hydrocarbonaceous materials is accomplished by using a natural gasoline fraction, boiling in the range of from 200.degree.-400.degree. F., as a solvent extraction agent and then effecting a centrifugal separation at elevated temperatures and pressures. The resulting separated asphaltic materials will have far less heptane soluble material than the heretofore used procedures which involved the settling out of the asphaltenes in huge settling tanks.
Abstract: A more efficient separation of the asphaltenes from microcrystalline waxes in the bottoms from crude oil distillation is accomplished by using a natural gasoline fraction, boiling in the range of from 200.degree.-400.degree. F., as a solvent extraction agent and then effecting a centrifugal separation at elevated temperatures and pressures. The resulting separated asphaltenes will have far less microcrystalline wax content than the heretofore used procedures which involved the settling out of the asphaltenes in huge settling tanks.
Abstract: Small lumps of coal are contacted in an upflow confined reactor with liquid SO.sub.2 and some recycled hydrocarbons at an elevated pressure to effect the disintegration of the coal to micro-sized dust particles and, preferably, the resulting coal dust and liquid SO.sub.2 with entrained liquid hydrocarbons that are withdrawn from the top of the reactor will undergo a further pressurized centrifugal contact-separation step. The liquid stream from the latter is recycled to the upflow reactor while the coal dust is recovered for use as a carbonaceous fuel ready for economical pipeline transportation suspended in either gas or liquid, with the liquid being either water or oil. Alternatively, the dust may be subjected to liquification, or such other treatment as may be desired.