Patents Assigned to Energy Science Laboratories, Inc.
  • Patent number: 7144624
    Abstract: A thermal interface includes nanofibrils. The nanofibrils may be attached to a flat base or membrane, or may be attached to the tip portions of larger diameter fibers. The nanofibrils have a diameter of less than about 1 micron, and may advantageously be formed from single walled and/or multi-walled nanotubes.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: December 5, 2006
    Assignee: Energy Science Laboratories, Inc.
    Inventors: Timothy R. Knowles, Christopher L. Seaman
  • Patent number: 7132161
    Abstract: A fiber velvet comprising nano-size fibers or nanofibrils attached to micro-size fibers is disclosed. Methods of manufacturing the velvet as well as various uses of the velvet are also described. For example, the fiber velvet can be used as a thermal interface or as an adhesive material. The nanofibrils may be attached to a flat base or membrane, or may be attached to the tip portions of the micro-size or larger diameter fibers. Various attributes of the micro-size fibers and of the nano-size fibers, for example, geometry (e.g. size, length, packing density) material type (e.g. carbon, metal, polymer, or ceramic) and properties (e.g. conductivity, modulus, surface energy, dielectric constant, surface roughness) can be selected depending on the desired attributes of the fiber velvet. The nanofibrils have a diameter of less than about 1 micron, and may advantageously be formed from single walled and/or multi-walled carbon nanotubes.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: November 7, 2006
    Assignee: Energy Science Laboratories, Inc.
    Inventors: Timothy R. Knowles, Christopher L. Seaman
  • Patent number: 6913075
    Abstract: A thermal interface includes nanofibrils. The nanofibrils may be attached to a flat base or membrane, or may be attached to the tip portions of larger diameter fibers. The nanofibrils have a diameter of less than about 1 micron, and may advantageously be formed from single walled and/or multi-walled nanotubes.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: July 5, 2005
    Assignee: Energy Science Laboratories, Inc.
    Inventors: Timothy R. Knowles, Christopher L. Seaman
  • Patent number: 4758267
    Abstract: In a system and method for producing ultrafine particles and ultrafine fibers of a given source material by evaporating and condensing the material in a gas atmosphere that includes inert gas. A smaller, more narrow size distribution is accomplished by producing the particles and fibers in a microgravity environment in order to reduce particle coalescence caused by convection currents. Particle coalescence also is reduced in an Earth gravity environment by controlling the convection currents. Condensed particles are collected either by providing an electrostatic field or a spatially varying magnetic field or by causing the gas to move through a filter which collects the particles. Nonferromagnetic material fibers are produced and collected by electrodes which produce an electro- static field. Ferromagnetic particles are collected by spatially varying magnetic fields.
    Type: Grant
    Filed: December 23, 1985
    Date of Patent: July 19, 1988
    Assignee: Energy Science Laboratories, Inc.
    Inventor: George W. Webb