Patents Assigned to Enertechnix, Inc.
  • Patent number: 9744490
    Abstract: Apparatus and methods for selectively separating a volatile constituent of a particle from a gas stream for analysis. Particles are separated from bulk flow by inertia and impacted in a cavity containing a small but stable vortex or eddy. Heat is applied to volatilize constituents of the particles. The gas entrained within the vortex, which exchanges only slowly with the bulk flow, is withdrawn for analysis. In this way, a high volume flow containing particles of interest is reduced to a low volume flow containing a vapor concentrate. Advantageously, the apparatus may be operated at very low pressure drops in fully continuous, semi-continuous or batch mode according to the requirements of the downstream analytical unit. The apparatus finds use in active surveillance, such as in use of aerosols to detect explosives or chemical residues on persons, vehicles or luggage in real time.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: August 29, 2017
    Assignee: Enertechnix, Inc.
    Inventors: Igor Novosselov, Peter Ariessohn
  • Patent number: 9414024
    Abstract: An imaging system with the ability to produce clear images of deposits inside operating high temperature process equipment such as kraft recovery boilers and power utility boilers uses a terahertz/mm-wave imaging system. This system allows direct inspection capability and the ability to directly measure deposit thickness on tubes and other interior surfaces at all locations within the boiler and precipitator. Terahertz and mm-wave imaging systems employ active imaging in which a beam of terahertz or mm-wave radiation generated within the imaging system is used to illuminate a region of the scene under investigation. The reflected radiation is collected by a lens or mirror system and focused onto a detector that converts the collected radiation into an electrical signal. Both the illuminating beam and the receiving optics are scanned across the scene in a raster fashion to produce a time-varying signal that is converted into an image of the scene.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: August 9, 2016
    Assignee: ENERTECHNIX, INC.
    Inventors: George Kychakoff, Peter Ariessohn
  • Patent number: 8561486
    Abstract: Devices, apparatus and methods are disclosed for non-contact pneumatic sampling and sampling of surfaces, persons, articles of clothing, buildings, furnishings, vehicles, baggage, packages, mail, and the like, for contaminating aerosols indicative of a hazard or a benefit, where the contaminating aerosols are chemical, radiological, biological, toxic, or infectious in character. In a first device, a central orifice for pulling a suction gas stream is surrounded by a peripheral array of convergingly-directed gas jets, forming a virtual sampling chamber. The gas jets are configured to deliver millisecond pneumatic pulses that erode particles from solid surfaces at a distance.
    Type: Grant
    Filed: April 3, 2011
    Date of Patent: October 22, 2013
    Assignee: Enertechnix, Inc
    Inventors: Igor V Novosselov, Peter C Ariessohn, Evan D Dengler, Michelle Hickner
  • Patent number: 8539840
    Abstract: An apparatus or device for collecting aerosol particles from a gas stream, having a collector body enclosing a collector channel, a particle trap in the collector channel, and an injection duct for injecting a discrete microdroplet of an elution reagent. The particle trap may be a centrifugal impactor, a bluff body impactor, or an electrostatic impactor. Aerosol particles are deposited on the surface during collection and are subsequently eluted with a microdroplet or a series of microdroplets as a concentrated liquid sample so that the sample can be analyzed in situ or conveyed to a detector for analysis. The collector serves as an aerosol-to-liquid conversion module as part of an apparatus for detecting and analyzing aerosol particles, and may be used in an integrated environmental threat assessment system, for example for characterization of aerosolized chemical and biological weapons, or for industrial or environmental monitoring.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: September 24, 2013
    Assignee: Enertechnix, Inc
    Inventors: Peter C Ariessohn, Igor V Novosselov, Evan Dengler
  • Patent number: 8475577
    Abstract: An aerosol sampling intake configured to exclude particles generally greater than 20 microns AD and capture particles of less than about 10 microns AD with high efficiency, independent of weather conditions, through which air is sampled by suction. The intake combines an omnidirectional horizontal segment with diffuser and elbow, the elbow transitioning flow to a vertical segment, the vertical segment with overhanging lip, the centrifugal impactor for self-cleaning operation, thus relieving the dual problems of re-entrainment of particles bouncing from the impactor surface and fouling by particles sticking to the impactor surface. The device is adapted for use on moving vehicles, for sampling at increased windspeeds, or for sampling in rain.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: July 2, 2013
    Assignee: ENERTECHNIX, Inc
    Inventors: Igor V Novosselov, Peter C Ariessohn
  • Publication number: 20130042893
    Abstract: The lifetime of aerosol monitoring, concentration and collection equipment is extended by acoustic cleaning of accreted particle deposits from internal surfaces where fouling occurs by application of acoustic energy to the particle accretion surface, optionally in combination with a liquid wash or sampling volume. In one application, acoustic cleaning or sampling of particle deposits for analysis is triggered by a signal indicating changes in gas flow associated with particle loading. In another application, electro-acoustic transducers may be used to prevent particle buildup without interruption of particle monitoring.
    Type: Application
    Filed: October 5, 2012
    Publication date: February 21, 2013
    Applicant: ENERTECHNIX, INC
    Inventor: Enertechnix, Inc
  • Publication number: 20120292523
    Abstract: A device for detection of pluggage in an ash hopper of a coal fired boiler to identify when the opening in the bottom of the ash hopper becomes blocked by obstructions, so that timely and effective measures can be taken to remove the blockage without incurring economic loss in the operation of the boiler. At least one microwave or Terahertz transmitter unit configured to produce a microwave beam in either X or K band frequencies or at Terahertz frequencies (300 GHz to 3 THz), and at least one microwave receiver unit or beams that are interrupted by a blockage in the ash hopper, and produce an output to indicate obstruction of the beam or beams by the blockage. When the beam is interrupted, an output signal is produced to indicate obstruction of the beam by the blockage. The output signal is to notify process operators of the need to remove said blockage, and to control a blockage removal process.
    Type: Application
    Filed: January 20, 2011
    Publication date: November 22, 2012
    Applicant: Enertechnix, Inc.
    Inventors: Kychakoff George, Hogle Richard
  • Patent number: 8307723
    Abstract: Devices and methods are disclosed for non-contact pneumatic sampling of surfaces, persons, articles of clothing, buildings, furnishings, vehicles, baggage, packages, mail, and the like, for aerosols or vapor residues indicative of a hazard or a benefit, where the residues are chemical, radiological, biological, toxic, or infectious in character. A central orifice for pulling a vacuum is surrounded by an array of convergingly-directed gas jets, forming a “virtual sampling chamber”. The gas jets are configured to deliver millisecond pneumatic pulses that erode particles and vapors from solid surfaces at a distance. A curtain wall flow encloses the sampling area during pulse retrieval.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: November 13, 2012
    Assignee: Enertechnix, Inc.
    Inventors: Igor V Novosselov, Peter C Ariessohn, Evan D Dengler, Michelle Hickner
  • Publication number: 20120174650
    Abstract: The lifetime of aerosol monitoring, concentration and collection equipment is extended by acoustic cleaning of accreted particle deposits from internal surfaces where fouling occurs by application of acoustic energy to the particle accretion surface, optionally in combination with a liquid wash or sampling volume. In one application, acoustic cleaning or sampling of particle deposits for analysis is triggered by a signal indicating changes in gas flow associated with particle loading. In another application, electro-acoustic transducers may be used to prevent particle buildup without interruption of particle monitoring.
    Type: Application
    Filed: May 2, 2011
    Publication date: July 12, 2012
    Applicant: ENERTECHNIX, INC
    Inventors: Peter C. Ariessohn, Igor V. Novosselov, Evan Dengler
  • Publication number: 20120105839
    Abstract: Improved centrifugal particle traps for aerosol particle collection and sampling characterized by a curved, progressively tapered impactor channel operable over a incompressible or compressible flow regime, or a flow regime transitioning from incompressible to compressible over the length of the particle trap. Mixtures of particles in a flowing gas stream are impactingly captured and separated by size. The particle traps can be operated to collect submicron particles without blockage, have lower pressure drops to reduce overall power requirements, and surprisingly, viability of biological particles captured in the particle traps of the invention is increased. Also disclosed are systems and methods combining these improved particle traps with in-line particle concentrators and with aerosol sample or liquid sample processing and analysis systems.
    Type: Application
    Filed: July 9, 2010
    Publication date: May 3, 2012
    Applicant: ENERTECHNIX, INC
    Inventors: Igor V. Novosselov, Peter C. Ariessohn
  • Publication number: 20110232498
    Abstract: An aerosol sampling intake configured to exclude particles generally greater than 20 microns AD and capture particles of less than about 10 microns AD with high efficiency, independent of weather conditions, through which air is sampled by suction. The intake combines an omnidirectional horizontal segment with diffuser and elbow, the elbow transitioning flow to a vertical segment, the vertical segment with overhanging lip, the centrifugal impactor for self-cleaning operation, thus relieving the dual problems of re-entrainment of particles bouncing from the impactor surface and fouling by particles sticking to the impactor surface. The device is adapted for use on moving vehicles, for sampling at increased windspeeds, or for sampling in rain.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 29, 2011
    Applicant: ENERTECHNIX INC.
    Inventors: Igor V. Novosselov, Peter C Ariessohn
  • Publication number: 20110203931
    Abstract: Devices, apparatus and methods are disclosed for non-contact pneumatic sampling and sampling of surfaces, persons, articles of clothing, buildings, furnishings, vehicles, baggage, packages, mail, and the like, for contaminating aerosols or vapors indicative of a hazard or a benefit, where the contaminating aerosols or vapors are chemical, radiological, biological, toxic, or infectious in character. In a first device, a central orifice for pulling a suction gas stream is surrounded by a peripheral array of convergingly-directed gas jets, forming a virtual sampling chamber. The gas jets are configured to deliver millisecond pneumatic pulses that erode particles and vapors from solid surfaces at a distance.
    Type: Application
    Filed: April 3, 2011
    Publication date: August 25, 2011
    Applicant: ENERTECHNIX, INC
    Inventors: Igor V. Novosselov, Peter C. Ariessohn, Evan D. Dengler, Michelle Hickner
  • Publication number: 20110186436
    Abstract: Devices, apparatus and methods are disclosed for non-contact pneumatic sampling and sampling of surfaces, persons, articles of clothing, buildings, furnishings, vehicles, baggage, packages, mail, and the like, for contaminating aerosols indicative of a hazard or a benefit, where the contaminating aerosols are chemical, radiological, biological, toxic, or infectious in character. In a first device, a central orifice for pulling a suction gas stream is surrounded by a peripheral array of convergingly-directed gas jets, forming a virtual sampling chamber. The gas jets are configured to deliver millisecond pneumatic pulses that erode particles from solid surfaces at a distance.
    Type: Application
    Filed: April 3, 2011
    Publication date: August 4, 2011
    Applicant: ENERTECHNIX, INC
    Inventors: Igor V. Novosselov, Peter C. Ariessohn, Evan D. Dengler, Michelle Hickner
  • Publication number: 20110132108
    Abstract: Devices and methods are disclosed for non-contact pneumatic sampling of surfaces, persons, articles of clothing, buildings, furnishings, vehicles, baggage, packages, mail, and the like, for aerosols or vapor residues indicative of a hazard or a benefit, where the residues are chemical, radiological, biological, toxic, or infectious in character. A central orifice for pulling a vacuum is surrounded by an array of convergingly-directed gas jets, forming a “virtual sampling chamber”. The gas jets are configured to deliver millisecond pneumatic pulses that erode particles and vapors from solid surfaces at a distance. A curtain wall flow encloses the sampling area during pulse retrieval.
    Type: Application
    Filed: July 12, 2010
    Publication date: June 9, 2011
    Applicant: ENERTECHNIX, INC
    Inventors: Igor V. Novosselov, Peter C. Ariessohn, Evan D. Dengler, Michelle Hickner
  • Patent number: 7956326
    Abstract: A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: June 7, 2011
    Assignee: Enertechnix, Inc.
    Inventors: George Kychakoff, Martin A. Afromowitz, Richard E. Hogle
  • Patent number: 7938576
    Abstract: A sensing system simultaneously obtains images and surface temperatures of processing tubes inside process heaters using an imaging sensor operating in the visible or infrared regions of the spectrum and capable of detecting visible or infrared radiation emitted or reflected from surfaces within the process heater, and of providing an image signal to a display or to an image processor. One or more single element infrared detectors viewing specific regions within the aforesaid image accurately measure the intensity of radiation emitted by surfaces within those specific regions so as to allow the temperature of the surfaces within those specific regions to be inferred.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: May 10, 2011
    Assignee: Enertechnix, Inc.
    Inventors: George Kychakoff, Peter Ariessohn, Richard E. Hogle
  • Publication number: 20110072772
    Abstract: Skimmer devices for concentrating an aerosol from a flowing gas stream, said skimmers having an inlet with inlet aperture and inlet raceway, an outlet with virtual impactor void and collector channel, and a bulk flow divertor positioned axisymmetrically on the long axis of flow, further characterized in that the downstream surface of the bulk flow divertor is curved for contactingly diverting the streamlines of the bulk flow by greater than 90 degrees away from the long axis of flow without wall separation or instability. Also described are combinations of slot-type and annular-type skimmers with upstream focusing elements such as aerodynamic lenses, and uses thereof.
    Type: Application
    Filed: December 9, 2010
    Publication date: March 31, 2011
    Applicant: ENERTECHNIX, INC
    Inventors: Peter C. Ariessohn, Igor V. Novosselov
  • Patent number: 7875095
    Abstract: A skimmer device for concentrating an aerosol from a flowing gas stream, having an inlet with inlet aperture and inlet raceway, an outlet with virtual impact void and collector channel, and bulk flow divertors symmetrically disposed on either side of the long axis of flow, further characterized in that the downstream walls of the bulk flow divertors are concavedly curved and reverse the direction of bulk flow. In section, the four channels or passages of the “skimmer” thus form a “crossed tee” with concavedly contoured lateral arms curving back around. The lateral flow channels are for diverting the bulk flow into exhaust chimney spaces, and the chimney spaces are positioned proximate to the inlet element and anterior to the collection channel. In operation, the bulk flow streamlines are thereby folded more than 90 degrees away from the long axis of flow on the laterally disposed concave walls of the bulk flow channels.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: January 25, 2011
    Assignee: Enertechnix, Inc
    Inventors: Peter C Ariessohn, Igor V Novosselov
  • Publication number: 20100186524
    Abstract: An apparatus or device for collecting aerosol particles from a gas stream, having a collector body enclosing a collector channel, a particle trap in the collector channel, and an injection duct for injecting a discrete microdroplet of an elution reagent. The particle trap may be a centrifugal impactor, a bluff body impactor, or an electrostatic impactor. Aerosol particles are deposited on the surface during collection and are subsequently eluted with a microdroplet or a series of microdroplets as a concentrated liquid sample so that the sample can be analyzed in situ or conveyed to a detector for analysis. The collector serves as an aerosol-to-liquid conversion module as part of an apparatus for detecting and analyzing aerosol particles, and may be used in an integrated environmental threat assessment system, for example for characterization of aerosolized chemical and biological weapons, or for industrial or environmental monitoring.
    Type: Application
    Filed: February 3, 2009
    Publication date: July 29, 2010
    Applicant: ENERTECHNIX, INC
    Inventors: Peter C. Ariessohn, Igor V. Novosselov
  • Patent number: 7704294
    Abstract: Respirable particles with diameters on the order of 0.05 to 10 microns entrained in an air stream, are concentrated in an aerodynamic lens (FIG. 2) for separation from the air steam. The entire structure is made by microfabrication techniques, such as silicon micro-machining which enables arrays of precisely aligned slit lenses to be made on a silicon chip. At a Reynolds number of 800, a slit 25 microns wide by 1 mm tall will pass a flow of only 0.28 liters per minute, but arrays of lenses (FIG. 4), stacked in parallel banks, multiplies the available flow rate. Placing a skimmer (27) at the exit of each silicon micro-machined lens in the assembly and connecting the skimmer channels in chimneys (55), allows the bulk of the gas flow to be stripped off while allowing the concentrated particle stream to pass into a region of much lower flow rate, thereby producing a highly concentrated aerosol in the low velocity stream.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: April 27, 2010
    Assignee: Enertechnix, Inc.
    Inventor: Peter Ariessohn