Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing an integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: A natural gas liquefaction system and method for effectively and efficiently removing heavy hydrocarbons and converting natural gas into liquefied natural gas. Natural gas streams entering the system may consist of varied gas compositions, pressures, and temperatures. In embodiments the system may comprise a natural gas (NG)-to-liquefied natural gas (LNG) portion and a closed-loop refrigeration portion comprising a closed-loop single mixed refrigerant system. In other embodiments the system may comprise an NG-to-LNG portion and a closed-loop refrigeration portion comprising a closed-loop gaseous nitrogen expansion refrigeration system. All embodiments utilize an integrated heat exchanger with cold-end and warm-end sections and integrated multi-stage compressor and expander configurations (e.g. compander) in order to increase overall operation flexibility and efficiency.
Abstract: A natural gas liquefaction system and method for effectively and efficiently removing heavy hydrocarbons and converting natural gas into liquefied natural gas. Natural gas streams entering the system may consist of varied gas compositions, pressures, and temperatures. In embodiments the system may comprise a natural gas (NG)-to-liquefied natural gas (LNG) portion and a closed-loop refrigeration portion comprising a closed-loop single mixed refrigerant system. In other embodiments the system may comprise an NG-to-LNG portion and a closed-loop refrigeration portion comprising a closed-loop gaseous nitrogen expansion refrigeration system. All embodiments utilize an integrated heat exchanger with cold-end and warm-end sections and integrated multi-stage compressor and expander configurations (e.g. compander) in order to increase overall operation flexibility and efficiency.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing an integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing an integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a single heat exchanger, multiple gas-liquid separators, multiple expander/compressor sets, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing an integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: A natural gas liquefaction system and method for effectively and efficiently removing heavy hydrocarbons and converting natural gas into liquefied natural gas. Natural gas streams entering the system may consist of varied gas compositions, pressures, and temperatures. In embodiments the system may comprise a natural gas (NG)-to-liquefied natural gas (LNG) portion and a closed-loop refrigeration portion comprising a closed-loop single mixed refrigerant system. In other embodiments the system may comprise an NG-to-LNG portion and a closed-loop refrigeration portion comprising a closed-loop gaseous nitrogen expansion refrigeration system. All embodiments utilize an integrated heat exchanger with cold-end and warm-end sections and integrated multi-stage compressor and expander configurations (e.g. compander) in order to increase overall operation flexibility and efficiency.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a integrated heat exchanger, multiple gas-liquid separators, external refrigeration systems, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a single heat exchanger, multiple gas-liquid separators, multiple expander/compressor sets, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a single heat exchanger, multiple gas-liquid separators, multiple expander/compressor sets, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a single heat exchanger, multiple gas-liquid separators, multiple expander/compressor sets, and a rectifier attached to a liquid product drum.
Abstract: One or more specific embodiments disclosed herein includes a method for separating hydrogen from an olefin hydrocarbon rich compressed effluent vapor stream, employing a single heat exchanger, multiple gas-liquid separators, multiple expander/compressor sets, and a rectifier attached to a liquid product drum.