Abstract: A control system for an aero compression combustion drive assembly, the aero compression combustion drive assembly having an engine member, a transmission member and a propeller member, the control system including a sensor for sensing a pressure parameter in each of a plurality of compression chambers of the engine member, the sensor for providing the sensed pressure parameter to a control system device, the control system device having a plurality of control programs for effecting selected engine control and the control system device acting on the sensed pressure parameter to effect a control strategy in the engine member A control method is further included.
Type:
Grant
Filed:
February 2, 2017
Date of Patent:
March 24, 2020
Assignee:
Engineered Propulsion Systems, Inc.
Inventors:
Steven M. Weinzierl, Michael J. Fuchs, Alexander Seybold-Epting
Abstract: A control system for an aero compression combustion drive assembly, the aero compression combustion drive assembly having an engine member, a transmission member and a propeller member, the control system including a sensor for sensing a pressure parameter in each of a plurality of compression chambers of the engine member, the sensor for providing the sensed pressure parameter to a control system device, the control system device having a plurality of control programs for effecting selected engine control and the control system device acting on the sensed pressure parameter to effect a control strategy in the engine member. A control method is further included.
Abstract: The present invention is an aero engine that is provided with compression combustion and weighs less than 725 lbs. The present invention is further a method of forming the aero engine.
Abstract: The present invention is an aero engine that is provided with compression combustion and weighs less than 725 lbs. The present invention is further a method of forming the aero engine.
Abstract: A control system for an aero compression combustion drive assembly, the aero compression combustion drive assembly having an engine member, a transmission member and a propeller member, the control system including a sensor for sensing a pressure parameter in each of a plurality of compression chambers of the engine member, the sensor for providing the sensed pressure parameter to a control system device, the control system device having a plurality of control programs for effecting selected engine control and the control system device acting on the sensed pressure parameter to effect a control strategy in the engine member. A control method is further included.
Abstract: An engine with a hybrid crankcase includes the crankcase being a composite construction having an exoskeleton formed of a non-ferrite material having no defined endurance limit as a material, the non-ferrite exoskeleton encapsulating a load bearing skeleton formed of a ferrite material, the ferrite material having a well defined endurance limit, whereby the skeleton acts to carry the highest engine loadings. A method of forming such an engine is further included.