Patents Assigned to Enlitic, Inc.
  • Patent number: 11056220
    Abstract: An intensity transform augmentation system is operable to generate a plurality of sets of augmented images by performing a set of intensity transformation functions on each of a training set of medical scans. Each of the set of intensity transformation functions are based on density properties of corresponding anatomy feature present in the training set of medical scans. A computer vision model is generated by performing a training step on the plurality of sets of augmented images, where each augmented image of a set of augmented images is assigned same output label data based on a corresponding one of the training set of medical scans. Inference data is generated by performing an inference function on a new medical scan by utilizing the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: July 6, 2021
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Publication number: 20210183485
    Abstract: A global multi-label generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Global probability data that includes a set of global probability values each indicating a probability that a corresponding one of the set of abnormality classes is present in the new medical scan is generated based on the probability matrix data for transmission to a client device.
    Type: Application
    Filed: February 2, 2021
    Publication date: June 17, 2021
    Applicant: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman
  • Publication number: 20210158936
    Abstract: A medical scan viewing system is conFIG.d to: receive a first medical scan and a second medical scan from a medical picture archive system, the first medical scan associated with a unique patient ID and a first scan date and the second medical scan associated with the unique patient ID and a second scan date; identify locations of anatomical landmarks in the first medical scan; identifying corresponding locations of the anatomical landmarks in the second medical scan; co-register the first medical scan with the second medical scan based on the locations of the anatomical landmarks in the first medical scan with the corresponding locations of the anatomical landmarks in the second medical scan; and present for display, via an interactive user interface, the first medical scan with the second medical scan, wherein the first medical scan and the second medical scan are synchronously presented, based on the co-registering.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 27, 2021
    Applicant: Enlitic, Inc.
    Inventors: Shankar Rao, Jordan Francis, Kevin Lyman
  • Patent number: 11011257
    Abstract: A multi-label heat map display system is operable to receive a medical scan and a set of heat maps set of heat maps that each correspond to probability matrix data generated for each of a set of abnormality classes. An interactive interface that displays image data of the medical scan and at least one of the set of heat maps is generated for display on a display device associated with the multi-label heat map display system. User input to a client device is received, and an updated interactive interface that includes a change to the display of the at least one of the set of heat maps by the second portion of the interactive interface in response to the user input is displayed.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: May 18, 2021
    Assignee: Enlitic, Inc.
    Inventors: Lionel Lints, Li Yao, Kevin Lyman, Chris Croswhite, Ben Covington, Anthony Upton
  • Publication number: 20210118533
    Abstract: A triage routing system is operable to receive a medical scan via a receiver. Inference data for the medical scan is generated by performing an inference function, where the inference function utilizes a computer-vision model trained on a plurality of medical scans. One of a plurality of medical professionals is selected to review the medical scan based on the inference data. Triage routing data that indicates the medical scan and the one of the plurality of medical professionals is generated. The medical scan is transmitted to a client device associated with the one of the plurality of medical professionals for display via a display device in accordance with the triage routing data.
    Type: Application
    Filed: December 2, 2020
    Publication date: April 22, 2021
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington
  • Publication number: 20210118534
    Abstract: An electrocardiogram (ECG) interpretation system is operable to receive a captured image of an ECG printout. A waveform detection function is performed on the captured image to determine a plurality of locations of a plurality of ECG waveforms in the captured image. A plurality of waveform images are generated by partitioning the captured image based on the plurality of locations, where each of the plurality of waveform images includes one of the plurality of ECG waveforms. A plurality of pseudo-raw ECG signal data is generated by performing a signal reconstruction function on each of the plurality of waveform images, where each of the plurality of pseudo-raw ECG signal data corresponds to one of the plurality of waveform images. Diagnosis data is generated by performing a diagnosing function on the plurality of pseudo-raw ECG signal data. The diagnosis data is transmitted to a client device for display via a display device.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 22, 2021
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao
  • Publication number: 20210118552
    Abstract: A medical scan report labeling system is operable to transmit a medical report that includes natural language text to a first client device for display. Identified medical condition term data is received from the first client device in response. An alias mapping pair in a medical label alias database is identified by determining that a medical condition term of the alias mapping pair compares favorably to the identified medical condition term data. A medical code that corresponds to the alias mapping pair and a medical scan that corresponds to the medical report are transmitted to a second client device of an expert user for display, and accuracy data is received from the second client device in response. The medical code is mapped to the first medical scan in the medical scan database when the accuracy data indicates that the medical code compares favorably to the medical scan.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Applicant: Enlitic, Inc.
    Inventors: Devon Bernard, Kevin Lyman, Li Yao, Brian Basham, Rewon Child
  • Publication number: 20210110900
    Abstract: The de-identification system can be operable to receive, from at least one first entity, a medical scan and a corresponding medical report. A set of patient identifiers can be identified in a subset of fields of a header of the medical scan. A de-identified medical scan can be generated by replacing the subset of fields of the header of the medical scan with a corresponding set of anonymized fields generated by performing a header anonymization function. A subset of patient identifiers of the set of patient identifiers can be identified in the medical report. A de-identified medical report can be generated by replacing each of the subset of patient identifiers with corresponding anonymized placeholder text generated by performing a text anonymization function on the subset of patient identifiers. The de-identified medical scan and the de-identified medical report can be transmitted to a second entity via a network.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Applicant: Enlitic, Inc.
    Inventors: Eric C. Poblenz, Kevin Lyman, Chris Croswhite
  • Publication number: 20210082545
    Abstract: A medical evaluation system operates by: receiving a set of medical scans of a medical scan protocol captured for a patient, the set of medical scans corresponding to a proper subset of a plurality of sequence types; generating abnormality data by performing an inference function on the set of medical scans, wherein the inference function utilizes a computer vision model trained on a plurality of medical scans corresponding to the proper subset of the plurality of sequence types; calculating a confidence score for the abnormality data; generating first additional sequence data, wherein when the confidence score compares unfavorably to a confidence score threshold, the first additional sequence data indicates at least one first additional medical scan of the patient, corresponding to a first at least one of the plurality of sequence types not included in the proper subset of the plurality of sequence types, and when the confidence score compares favorably to the confidence score threshold, the first additional
    Type: Application
    Filed: November 19, 2020
    Publication date: March 18, 2021
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Ben Covington
  • Publication number: 20210082547
    Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Heat map visualization data can be generated for transmission to a client device based on the probability matrix data that indicates, for each of the set of abnormality classes, a color value for each pixel of the new medical scan.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 18, 2021
    Applicant: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Lionel Lints, Ben Covington, Anthony Upton
  • Publication number: 20210074394
    Abstract: An intensity transform augmentation system is operable to receive a training set of medical scans. Random intensity transformation function parameters are generated for each medical scan of the training set of medical scans. A plurality of augmented images are generated, where each of the plurality of augmented images is generated by performing a intensity transformation function on one of the training set of medical scans by utilizing the random intensity transform parameters generated for the one of the training set of medical scan. A computer vision model is generated by performing a training step on the plurality of augmented images. A new medical scan is received via the receiver. Inference data is generated by performing an inference function that utilizes the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
    Type: Application
    Filed: November 20, 2020
    Publication date: March 11, 2021
    Applicant: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Patent number: 10943681
    Abstract: A global multi-label generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Global probability data that includes a set of global probability values each indicating a probability that a corresponding one of the set of abnormality classes is present in the new medical scan is generated based on the probability matrix data for transmission to a client device.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: March 9, 2021
    Assignee: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman
  • Publication number: 20210057067
    Abstract: A medical picture archive integration system includes a de-identification system that includes a first memory designated for protected health information (PHI), operable to perform a de-identification function is on a DICOM image, received from a medical picture archive system, to identify at least one patient identifier and generate a de-identified medical scan that does not include the at least one patient identifier. The medical picture archive integration system further includes a de-identified image storage system that stores the de-identified medical scan in a second memory that is separate from the first memory, and an annotating system, operable to utilize model parameters received from a central server to perform an inference function on the de-identified medical scan, retrieved from the second memory to generate annotation data for transmission to the medical picture archive system as an annotated DICOM file.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Chris Croswhite, Lionel Lints
  • Patent number: 10930387
    Abstract: A chest x-ray differential diagnosis system is operable to generate abnormality pattern data is generated for each of a received plurality of chest x-rays by identifying at least one pattern in each chest x-ray corresponding to an abnormality by utilizing a computer vision model that is trained on a plurality of training chest x-rays. Differential diagnosis data is generated for each chest x-ray based on the abnormality pattern data. Filtering parameters are received from a client device, and a filtered chest x-ray queue that includes a subset of chest x-rays is selected based on the filtering parameters and the differential diagnosis data is generated for transmission to the client device for display. Differential diagnosis data corresponding a chest x-ray indicated in chest x-ray selection data received from the client device is transmitted to the client device for display via the display device in conjunction with the chest x-ray.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Devon Bernard, Li Yao, Diogo Almeida, Ben Covington, Anthony Upton
  • Patent number: 10916337
    Abstract: The de-identification system can be operable to receive, from at least one first entity, a medical scan and a corresponding medical report. A set of patient identifiers can be identified in a subset of fields of a header of the medical scan. A de-identified medical scan can be generated by replacing the subset of fields of the header of the medical scan with a corresponding set of anonymized fields generated by performing a header anonymization function. A subset of patient identifiers of the set of patient identifiers can be identified in the medical report. A de-identified medical report can be generated by replacing each of the subset of patient identifiers with corresponding anonymized placeholder text generated by performing a text anonymization function on the subset of patient identifiers. The de-identified medical scan and the de-identified medical report can be transmitted to a second entity via a network.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: February 9, 2021
    Assignee: Enlitic, Inc.
    Inventors: Eric C. Poblenz, Kevin Lyman, Chris Croswhite
  • Patent number: 10910097
    Abstract: A medical scan report labeling system is operable to transmit a medical report that includes natural language text to a first client device for display. Identified medical condition term data is received from the first client device in response. An alias mapping pair in a medical label alias database is identified by determining that a medical condition term of the alias mapping pair compares favorably to the identified medical condition term data. A medical code that corresponds to the alias mapping pair and a medical scan that corresponds to the medical report are transmitted to a second client device of an expert user for display, and accuracy data is received from the second client device in response. The medical code is mapped to the first medical scan in the medical scan database when the accuracy data indicates that the medical code compares favorably to the medical scan.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: February 2, 2021
    Assignee: Enlitic, Inc.
    Inventors: Devon Bernard, Kevin Lyman, Li Yao, Brian Basham, Rewon Child
  • Patent number: 10902940
    Abstract: A triage routing system is operable to receive a medical scan via a receiver. Inference data for the medical scan is generated by performing an inference function, where the inference function utilizes a computer-vision model trained on a plurality of medical scans. One of a plurality of medical professionals is selected to review the medical scan based on the inference data. Triage routing data that indicates the medical scan and the one of the plurality of medical professionals is generated. The medical scan is transmitted to a client device associated with the one of the plurality of medical professionals for display via a display device in accordance with the triage routing data.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: January 26, 2021
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington
  • Patent number: 10896747
    Abstract: An electrocardiogram (ECG) interpretation system is operable to receive a captured image of an ECG printout. A waveform detection function is performed on the captured image to determine a plurality of locations of a plurality of ECG waveforms in the captured image. A plurality of waveform images are generated by partitioning the captured image based on the plurality of locations, where each of the plurality of waveform images includes one of the plurality of ECG waveforms. A plurality of pseudo-raw ECG signal data is generated by performing a signal reconstruction function on each of the plurality of waveform images, where each of the plurality of pseudo-raw ECG signal data corresponds to one of the plurality of waveform images. Diagnosis data is generated by performing a diagnosing function on the plurality of pseudo-raw ECG signal data. The diagnosis data is transmitted to a client device for display via a display device.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: January 19, 2021
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao
  • Patent number: 10896753
    Abstract: A lung screening assessment system is operable to receive a chest computed tomography (CT) scan that includes a plurality of cross sectional images. Nodule classification data of the chest CT scan is generated by utilizing a computer vision model that is trained on a plurality of training chest CT scans to identify a nodule in the plurality of cross sectional images and determine an assessment score. A lung screening report that includes the assessment score of the nodule classification data is generated for display on a display device associated with a user of the lung screening assessment system.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: January 19, 2021
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Devon Bernard, Li Yao, Ben Covington, Diogo Almeida, Brian Basham, Jeremy Howard, Anthony Upton, John Zedlewski
  • Patent number: 10878949
    Abstract: An intensity transform augmentation system is operable to receive a training set of medical scans. Random intensity transformation function parameters are generated for each medical scan of the training set of medical scans. A plurality of augmented images are generated, where each of the plurality of augmented images is generated by performing a intensity transformation function on one of the training set of medical scans by utilizing the random intensity transform parameters generated for the one of the training set of medical scan. A computer vision model is generated by performing a training step on the plurality of augmented images. A new medical scan is received via the receiver. Inference data is generated by performing an inference function that utilizes the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: December 29, 2020
    Assignee: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton