Abstract: An enhanced non-occluding feeding assembly for the administration or aspiration of fluids to a patient comprising a tube having an enlarged, resilient bolus near its distal end to which a weighted tip is connected is provided. The bolus defines an opening for the tube outlet minimizing occlusion or clogging of the opening. The feeding assembly provides advantageous peristaltic or stylet intubation and minimizes possibility of injury to a patient.
Abstract: A solar thermal energy collector includes a thermal receiver for receiving thermal energy from incident solar radiation and converting that energy, with minimum heat loss, into thermal energy transferred to and carried by a thermal fluid in a copper conductor. The copper tube is placed within a lower aluminum extrusion and may be secured thereto with a metal-filled silicone adhesive. The adhesive also acts as a heat-transfer device. The lower aluminum extrusion rests upon a foundation of isocyanurate urethane insulation which in turn rests upon the lower portion of a solar collector so that the central axis of the thermal fluid conducting tube lies along the axis of concentration of received solar energy. An upper aluminum extrusion is placed on top of the upper half of the copper tube and secured thereto with metal-filled silicone adhesive. The top surface of the upper aluminum extrusion is painted black and has a triangular-faceted surface.
Abstract: A solar energy collector including a primary optical concentrator, one or more solar cells and an improved solar cell cover design is provided. Each of the solar cells includes a flexible cell cover which significantly reduces optical losses due to gridline obscuration of active cell area and also due to reflection from the cover itself. The cover comprises an optically clear, flexible material, such as a silicone polymer, placed over the illuminated surface of each solar cell, with prisms formed on the outer surface of the cover such that incident sunlight is refracted by the prisms onto active cell area rather than partially onto non-active gridlines or conducting elements. Each of the prisms has a predetermined shape depending on the type of primary optical concentrator used in the solar energy collector.
Abstract: A solar thermal energy collector includes a thermal receiver for receiving thermal energy from incident solar radiation and converting that energy, with minimum heat loss, into thermal energy transferred to and carried by a thermal fluid in a copper conductor. The copper tube is placed within a lower aluminum extrusion and may be secured thereto with a metal-filled silicone adhesive. The adhesive also acts as a heat-transfer device. The lower aluminum extrusion rests upon a foundation of isocyanurate urethane insulation which in turn rests upon the lower portion of a solar collector so that the central axis of the thermal fluid conducting tube lies along the axis of concentration of received solar energy. An upper aluminum extrusion is placed on top of the upper half of the copper tube and secured thereto with metal-filled silicone adhesive. The top surface of the upper aluminum extrusion is painted black and has a triangular-faceted surface.
Abstract: A refractive optical concentrator for focussing solar energy on to small focal spots includes a linear Fresnel lens optically cross-coupled with simple cylindrical lenses. The cross-coupled lens concentrator comprises an optically clear dielectric material, such as acrylic plastic, with a plurality of linear prisms formed on its inner surface, and a plurality of perpendicularly mounted cylindrical lenses formed on its outer surface, such that the cylindrical lenses focus the sunlight toward a series of lateral axes and the prisms re-focus the sunlight along a longitudinal axis. The bi-focussed radiant energy is thereby concentrated upon a series of photovoltaic cells for transforming sunlight into electrical energy.