Abstract: The disclosed apparatus and control system produces a single, on demand, energetic gaseous working fluid from any heat source. Working fluid in a liquid phase is released into a heat exchange tube in the form of very fine droplets or atomized mist, where it is rapidly heated to its gaseous phase. The gaseous working fluid can continue to absorb heat before exiting the heat exchange tube to perform work. The disclosed system controls the release of working fluid into the heat exchange tube and/or the heat energy to which the tube is exposed, resulting in a flow of energetic gaseous working fluid that can be quickly adjusted in response to changing conditions without a large pressure vessel.
Type:
Grant
Filed:
November 11, 2019
Date of Patent:
March 1, 2022
Assignee:
Enviro Power, Inc.
Inventors:
Michael A. Cocuzza, Patrick J. Emerick, Daryl Biron
Abstract: An evaporator with integrated heat recovery incorporates a vapor tube in a combustion chamber surrounded by a water jacket. The water jacket is in fluid communication with an exhaust gas heat exchanger. Coolant circulates in series or parallel first and second coolant flows through the exhaust gas heat exchanger to recover heat from exhaust gasses leaving the combustion chamber and through the water jacket surrounding the combustion chamber to recover heat not delivered to the operating fluid. The evaporator may incorporate a condenser within the housing and in fluid communication with the exhaust gas heat exchanger and/or water jacket. The evaporator may be divided to flow in parallel through the condenser the exhaust gas heat exchanger. The water jacket may be fluidly connected with one or the other of the condenser or the exhaust gas heat exchanger.
Abstract: An evaporator with integrated heat recovery incorporates a vapor tube in a combustion chamber surrounded by a water jacket. The water jacket is in fluid communication with an exhaust gas heat exchanger. Coolant circulates through the exhaust gas heat exchanger to recover heat from exhaust gasses leaving the combustion chamber and then circulates through the water jacket surrounding the combustion chamber to recover heat not delivered to the operating fluid. The evaporator may incorporate a condenser within the housing and in fluid communication with the exhaust gas heat exchanger and water jacket. Coolant may enter the evaporator housing at the condenser before circulating through the exhaust gas heat exchanger and water jacket.