Patents Assigned to Eospace, Inc.
  • Patent number: 11841562
    Abstract: Electro-optic modulation of multiple phase modulator waveguides with a single electrode is made possible by determining places of equal electric field strength. Substrate extensions support edges of a wide hot electrode and ground electrodes equally spaced from the wide hot electrodes. Waveguides are positioned in the extensions separated from the electrodes by buffer layers. A wide microstrip hot electrode on a buffer layer, wider substrate and ground has multiple waveguides in the substrate below the buffer layer. A thinned substrate has a microstrip hot electrode and spaced coplanar grounds with multiple waveguides located on both sides. Decreasing substrate thickness flattens the electric field strength between the electrodes and allows multiple waveguides located between the central hot and outer ground electrodes. Adjacent waveguides with different asymmetric waveguide index portion staged along their length eliminate cross talk.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: December 12, 2023
    Assignee: EOSPACE INC.
    Inventors: David Emil Moilanen, Suwat Thaniyavarn, Walter Charczenko
  • Patent number: 11385517
    Abstract: A Dual-polarization optical modulator that can be used to modulate light in both polarization states, in which the operating points of each polarization state can be set at any arbitrary point independently from each other. A novel architecture for an optically-controlled Phased-array beam forming system utilizing this unique dual-polarization is proposed to facilitate simple and practical implementation.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: July 12, 2022
    Assignee: EOSpace Inc.
    Inventor: Suwat Thaniyavarn
  • Patent number: 10018888
    Abstract: Improved optical interferometric modulators have a small waveguide spacing so that the waveguide pair are close to the central electrode, to enhance electro-optic interaction. Asymmetric waveguides with differential indices are used to effectively de-couple the waveguide pair. Multiple sections of asymmetric waveguide pairs with alternating differential indices are used to achieve chirp-free operation. Another version of the device utilizes transmission-line electrode that weave closer to one of the waveguide pair alternately between sections. Another version of the device utilizes waveguide structure that one of the waveguide is closer to the central electrode in alternate section. To improve efficiency further, a DC bias is provided on the outer electrodes configured as an RF-ground but DC-float electrodes. Another improvement is to have a slot is cut underneath the waveguide region to effectively reduce to thickness of the substrate. These improvements lead to higher modulator efficiency.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: July 10, 2018
    Assignee: EOSpace, Inc.
    Inventor: Suwat Thaniyavarn
  • Patent number: 9923631
    Abstract: The invention introduces a new RF test and measurement methodology based on optical signal processing that has the capability to measure all of the RF parameters (both amplitude and phase) of an electronic component or system including transmission (S21) and reflection (S11). It can also be applied to measuring the electro-optic properties of electro-optic modulators, both phase modulators and intensity modulators. The basis of the invention is to use the RF information encoded in the optical sidebands generated by an electro-optic modulator to determine all of the relevant parameters of an electronic or electro-optic device. Optical carrier suppression techniques are used to isolate the information carrying optical sidebands from the dominant optical carrier.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: March 20, 2018
    Assignee: EOSpace Inc.
    Inventors: David Emil Moilanen, Matthew Allen Hall
  • Patent number: 9705603
    Abstract: An optical modulator has a continuous wave laser input, an RF input, a bias and dither input and an output. A photodiode connected to an output tap produces a voltage that is amplified. Noise is removed from the amplified output. A spread-spectrum dither harmonic is generated and supplied to a multiplier with the amplified and filtered feedback and is used to create a DC bias. A spread-spectrum dither is created and added to the DC bias. Spread spectrum dither and bias both are applied to the bias input of optical modulator. The bias and spread spectrum dither controller is usable with other non-optical modulators and other electronic devices.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: July 11, 2017
    Assignee: EOSpace Inc.
    Inventor: Gregory L. Abbas
  • Publication number: 20160043803
    Abstract: Wide band phase modulators used with high power laser carriers convert high-frequency RF signals to phase-modulated optical signals. Higher laser optical power to the modulator produces larger RF signal sidebands. A carrier attenuation filter passes the attenuated carrier and non-attenuated RF modulation sidebands. Carrier attenuation leaves the larger RF signal sidebands. A demodulation filter used with a photodetector or a balanced photodetector pair converts the phase-modulated optical signal back to an electrical signal. Carrier-only attenuation allows high power laser use, avoids photodetector damage or saturation, and provides increased RF link gain, low noise figure (NF) and high spurious-free dynamic range (SFDR). Filtered-out carrier power fed back to the laser source increases to overall system efficiency.
    Type: Application
    Filed: September 21, 2012
    Publication date: February 11, 2016
    Applicant: EOSPACE INC.
    Inventor: Suwat Thaniyavarn
  • Patent number: 9250496
    Abstract: Wide band phase modulators used with high power laser carriers convert high-frequency RF signals to phase-modulated optical signals. Higher laser optical power to the modulator produces larger RF signal sidebands. A carrier attenuation filter passes the attenuated carrier and non-attenuated RF modulation sidebands. Carrier attenuation leaves the larger RF signal sidebands. A demodulation filter used with a photodetector or a balanced photodetector pair converts the phase-modulated optical signal back to an electrical signal. Carrier-only attenuation allows high power laser use, avoids photodetector damage or saturation, and provides increased RF link gain, low noise figure (NF) and high spurious-free dynamic range (SFDR). Filtered-out carrier power fed back to the laser source increases to overall system efficiency.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: February 2, 2016
    Assignee: EOSpace Inc.
    Inventor: Suwat Thaniyavarn
  • Patent number: 9158137
    Abstract: An optical modulator has a continuous wave laser input, an RF input, a bias and dither input and an output. A photodiode connected to an output tap produces a voltage that is amplified. Noise is removed from the amplified output. A spread-spectrum dither harmonic is generated and supplied to a multiplier with the amplified and filtered feedback and is used to create a DC bias. A spread-spectrum dither is created and added to the DC bias. Spread spectrum dither and bias both are applied to the bias input of optical modulator. The bias and spread spectrum dither controller is usable with other non-optical modulators and other electronic devices.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 13, 2015
    Assignee: Eospace Inc.
    Inventor: Gregory L. Abbas
  • Publication number: 20140205229
    Abstract: Improved optical interferometric modulators have a small waveguide spacing so that the waveguide pair are close to the central electrode, to enhance electro-optic interaction. Asymmetric waveguides with differential indices are used to effectively de-couple the waveguide pair. Multiple sections of asymmetric waveguide pairs with alternating differential indices are used to achieve chirp-free operation. Another version of the device utilizes transmission-line electrode that weave closer to one of the waveguide pair alternately between sections. Another version of the device utilizes waveguide structure that one of the waveguide is closer to the central electrode in alternate section. To improve efficiency further, a DC bias is provided on the outer electrodes configured as an RF-ground but DC-float electrodes. Another improvement is to have a slot is cut underneath the waveguide region to effectively reduce to thickness of the substrate. These improvements lead to higher modulator efficiency.
    Type: Application
    Filed: June 6, 2013
    Publication date: July 24, 2014
    Applicant: EOSpace Inc.
    Inventor: Suwat Thaniyavarn
  • Patent number: 8582927
    Abstract: A new High-Z optical modulator has a waveguide and electrodes on a substrate, a buffer layer with a low dielectric constant between the waveguide and the substrate, and a substance between the waveguide and the substrate with a dielectric constant lower than a dielectric constant of the substrate to the side and below the plane of the waveguide, thereby improving electro-optic field overlap, increasing RF speed and increasing transmission line impedance. The material with a dielectric constant lower than the substrate extends between the waveguide and the electrodes to a depth below the waveguide equal to or greater than the lateral distance between the waveguide and electrodes. This material may be air and may be introduced by cutting away portions of the substrate around the waveguide with a precision dicing saw. The electrodes may be placed even with the waveguide or below the waveguide on the cut-away portion of the substrate.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 12, 2013
    Assignee: EOSpace, Inc.
    Inventor: Suwat Thaniyavarn
  • Patent number: 7660491
    Abstract: A cw-laser source transmits low-noise, narrow-linewidth optical power via an optical fiber to a bias-free electro-optic phase modulator at a remote site, where an antenna or an RF sensor is located. The RF electrical signal modulates the phase modulator at the remote site, converting an electrical signal into an optical signal. The phase-modulated optical signal is fed back via the optical fiber to an optical filter whose filter transfer characteristics can be tuned and reconfigured to cancel the intermodulation distortion terms, particularly the dominant 3rd order intermodulation, as well as the 2nd order. The filtered optical signal is converted to the RF signal at the photodetector. The optical filter is used to effectively “linearize” the signal at the receiver end, rather than at the modulator end.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: February 9, 2010
    Assignee: EOSpace, Inc.
    Inventor: Suwat Thaniyavarn
  • Patent number: 6842569
    Abstract: Optical switches based on the balanced bridge interferometer design require precisely made (or half a coupling length) directional couplers to achieve minimum crosstalk for the two switch outputs. Precision 3 dB-directional couplers require the waveguide dimensions and fabrication parameters of the evanescent region to be tightly controlled making a low crosstalk switch difficult to manufacture and expensive. A new type of balanced bridge interferometer type switch is disclosed where the input and output directional couplers are asymmetrically biased to induce a certain difference in the propagation constants between the two waveguide in the directional couplers. By using the asymmetrically biased directional couplers with a certain tuning a bias voltage for the directional couplers. Low crosstalk switches can be achieved for a very wide range of directional coupler strengths, relaxing the precise half-coupling length directional couplers required in conventional design.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: January 11, 2005
    Assignee: Eospace, Inc.
    Inventor: Suwat Thaniyavarn