Abstract: The present invention discloses an X-ray imaging device comprising an X-ray absorber that comprises a plurality of semiconductor layers. The plurality of semiconductor layers comprise a substrate having a backside; and at least one absorption layer adapted to absorb at least one X-ray photon impinging on the at least one absorption layer that is adapted to correspondingly generate in response to the at least one impinging X-ray photon at least one electron-hole pair; and a readout unit, wherein the readout unit is operatively coupled to the X-ray absorber such to enable readout of the at least one electron-hole pair. Additional and alternative embodiments are described and claimed.
Type:
Grant
Filed:
August 17, 2008
Date of Patent:
August 7, 2012
Assignees:
CSEM Centre Suisse d'Electronique et de Mictrotechnique SA, Epispeed
Abstract: An apparatus and process for plasma enhanced chemical vapor deposition with an inductively coupled plasma with ion densities above 1010 cm?3 and energies below 20 eV at the substrate enables epitaxial deposition of group IV and compound semiconductor layers at high rates and low substrate temperatures. The epitaxial reactor allows for in-situ plasma cleaning by chlorine and fluorine containing gaseous species.
Abstract: Method for making an InGaAs/GaAs quantum well laser (10) on a Silicon substrate (15.1). The method comprises the steps: Formation of a virtual Germanium substrate (15) on the Silicon substrate (15.1) by means of a low-energy plasma-enhanced chemical vapour deposition (LEPECVD). The virtual Germanium substrate (15) comprises a pure Germanium layer (15.3). Formation of a Gallium Arsenide structure on the virtual Germanium substrate (15) by means of a metal organic chemical vapour deposition process.
Type:
Grant
Filed:
September 4, 2004
Date of Patent:
September 15, 2009
Assignee:
Epispeed S.A.
Inventors:
Hans Von Kaenel, Isabelle Sagnes, Guillaume Jacques Saint-Girons, Sophie Bouchoule
Abstract: A method of fabricating semiconductor heterostructures including the steps of: (a) positioning a silicon wafer in a suitable environment and (b) processing the silicon substrate by applying several processing steps. A first optional processing step includes growing a graded buffer layer on a silicon substrate by low-energy plasma-enhanced chemical vapor deposition (LEPECVD). A second processing step includes growing a constant composition buffer layer by LEPECVD. A third processing step includes subjecting the surface of the strain-relaxed buffer layer to a deposition process for a period of time and under prescribed conditions, in order to grow at least one additional layer. Subsequently, devices may be processed from the grown layer stack by using a prescribed sequence of steps including non-standard CMOS processes.
Type:
Application
Filed:
November 8, 2005
Publication date:
July 20, 2006
Applicant:
EpiSpeed SA
Inventors:
Hans Von Kaenel, Kristel Fobelets, Thomas Hackbarth