Abstract: Device of modular construction which permits the simultaneous or not-simultaneous recording and characterization of solid and liquid particles and gaseous components of engine exhaust gases on various test supports, with only small or no modification of the test support. Methods are based on individual or combined usage of laser scattering techniques, laser-induced breakdown spectroscopy, laser-induced ionization spectroscopy, laser-induced atomic fluorescence spectroscopy, IR-/VIS-/UV-laser absorption spectroscopy and laser-induced incandescence. Use of individual or combined usage of such devices permits the analysis of raw exhaust gas, the conditioned and/or treated exhaust gases for monitoring and checking working pattern of engine, individual components of exhaust gas treatment and/or total system on test beds and on vehicle and can be used for control of motor and/or exhaust components, such as catalysts and particle filters, on test beds and in driven usage, e.g.
Abstract: Device of modular construction which permits the simultaneous or not-simultaneous recording and characterization of solid and liquid particles and gaseous components of engine exhaust gases on various test supports, with only small or no modification of the test support. Methods are based on individual or combined usage of laser scattering techniques, laser-induced breakdown spectroscopy, laser-induced ionization spectroscopy, laser-induced atomic fluorescence spectroscopy, IR-/VIS-/UV-laser absorption spectroscopy and laser-induced incandescence. Use of individual or combined usage of such devices permits the analysis of raw exhaust gas, the conditioned and/or treated exhaust gases for monitoring and checking working pattern of engine, individual components of exhaust gas treatment and/or total system on test beds and on vehicle and can be used for control of motor and/or exhaust components, such as catalysts and particle filters, on test beds and in driven usage, e.g.
Abstract: Method and device for simultaneous in-situ determination of particle size and mass concentration of fluid-borne particles, wherein the device includes a sensor unit comprising a sending unit and a receiver, a laser coupled to the sensor unit, a detector coupled to the sensor unit, and a microprocessor coupled to the sensor unit, wherein the sensor unit is at least one of adjustable in cross section and variable in diameter and wherein the sensor unit is arranged to one of protrude into the fluid-borne particles and wrap around the fluid-borne particles. The method includes placing the sensor unit adjacent a pipe having a gas flow and simultaneously determining a particle size and a mass concentration of the fluid-borne particles in the gas flow.
Type:
Grant
Filed:
July 24, 2001
Date of Patent:
December 17, 2002
Assignee:
Esytec Energie-und Systemtechnik GmbH
Inventors:
Alfred Leipertz, Stefan Will, Stephan Schraml
Abstract: Process for selected adjustment of dropwise condensation on a surface comprising implanting nitrogen ions with a theoretically predicted minimum dose concentration of 1015 cm−2, the wetting characteristics of the surface being adjusted without cleaning or other preparation steps in such a way that stable dropwise condensation is formed on the surface and the intensity of condensation and thus heat transfer performance can be selected using the level of the dose concentration.