Patents Assigned to Etamota Corporation
  • Publication number: 20120138902
    Abstract: A vertical device geometry for a carbon-nanotube-based field effect transistor has one or multiple carbon nanotubes formed in a trench.
    Type: Application
    Filed: June 3, 2011
    Publication date: June 7, 2012
    Applicant: ETAMOTA CORPORATION
    Inventors: Brian Hunt, James Hartman, Michael J. Bronikowski, Eric Wong, Brian Y. Lim
  • Patent number: 8168495
    Abstract: A technique of the invention reduces significantly the distance between the gate and single-walled carbon nanotubes to improve performance and efficiency of a carbon nanotube transistor device. Without using a porous template structure, single-walled carbon nanotubes are grown perpendicularly to a substrate between a base metal layer and a middle mesh layer. The nanotubes are insulated with a thin insulator and then gate regions are formed.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: May 1, 2012
    Assignee: Etamota Corporation
    Inventors: Brian Y. Lim, Jon W. Lai
  • Publication number: 20110217827
    Abstract: Fabricating single-walled carbon nanotube transistor devices includes removing undesirable types of nanotubes. These undesirable types of nanotubes may include nonsemiconducting nanotubes, multiwalled nanotubes, and others. The undesirable nanotubes may be removed electrically using voltage or current, or a combination of these. This approach to removing undesirable nanotubes is sometimes referred to as “burn-off.” The undesirable nanotubes may be removed chemically or using radiation. The undesirable nanotubes of an integrated circuit may be removed in sections or one transistor (or a group of transistors) at a time in order to reduce the electrical current used or prevent damage to the integrated circuit during burn-off.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Applicant: ETAMOTA CORPORATION
    Inventor: Thomas W. Tombler, JR.
  • Patent number: 7960713
    Abstract: A vertical device geometry for a carbon-nanotube-based field effect transistor has one or multiple carbon nanotubes formed in a trench.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: June 14, 2011
    Assignee: Etamota Corporation
    Inventors: Brian Hunt, James Hartman, Michael J. Bronikowski, Eric Wong, Brian Y. Lim
  • Publication number: 20110136304
    Abstract: Techniques are used to fabricate carbon nanotube devices. These techniques improve the selective removal of undesirable nanotubes such as metallic carbon nanotubes while leaving desirable nanotubes such as semiconducting carbon nanotubes. In a first technique, slot patterning is used to slice or break carbon nanotubes have a greater length than desired. By altering the width and spacing of the slotting, nanotubes have a certain length or greater can be removed. Once the lengths of nanotubes are confined to a certain or expected range, the electrical breakdown approach of removing nanotubes is more effective. In a second technique, a Schottky barrier is created at one electrode (e.g., drain or source). This Schottky barrier helps prevent the inadvertent removal the desirable nanotubes when using the electrical breakdown approach. The first and second techniques can be used individually or in combination with each other.
    Type: Application
    Filed: June 11, 2010
    Publication date: June 9, 2011
    Applicant: ETAMOTA CORPORATION
    Inventors: Eric W. Wong, Brian D. Hunt, Rajay Kumar, Chao Li
  • Patent number: 7943418
    Abstract: Fabricating single-walled carbon nanotube transistor devices includes removing undesirable types of nanotubes. These undesirable types of nanotubes may include nonsemiconducting nanotubes, multiwalled nanotubes, and others. The undesirable nanotubes may be removed electrically using voltage or current, or a combination of these. This approach to removing undesirable nanotubes is sometimes referred to as “burn-off.” The undesirable nanotubes may be removed chemically or using radiation. The undesirable nanotubes of an integrated circuit may be removed in sections or one transistor (or a group of transistors) at a time in order to reduce the electrical current used or prevent damage to the integrated circuit during burn-off.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: May 17, 2011
    Assignee: Etamota Corporation
    Inventor: Thomas W. Tombler, Jr.
  • Patent number: 7926440
    Abstract: Apparatus and method for synthesizing nanostructures in a controlled process. An embodiment of the apparatus comprises a stage or substrate holder that is heated, e.g., resistively, and is the primary source of heating for the substrate for nanostructure synthesis. The substrate and substrate heater are enclosed in a chamber, e.g., a metal chamber, which is ordinarily at a lower temperature than are the substrate and substrate heater during synthesis. Some embodiments of the invention are particularly useful for chemical vapor deposition (CVD), low pressure CVD (LPCVD), metal organic CVD (MOCVD), and general vapor deposition techniques. Some embodiments of the present invention allow for in situ characterization and treatment of the substrate and nanostructures.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: April 19, 2011
    Assignee: Etamota Corporation
    Inventors: Thomas W. Tombler, Jr., Jon W. Lai, Brian Y. Lim, Borys Kolasa
  • Publication number: 20100270536
    Abstract: Single-walled carbon nanotube transistor devices, and associated methods of making such devices include a porous structure for the single-walled carbon nanotubes. The porous structure may be anodized aluminum oxide or another material. Electrodes for source and drain of a transistor are provided at opposite ends of the single-walled carbon nanotube devices. A concentric gate surrounds at least a portion of a nanotube in a pore. A transistor of the invention may be especially suited for power transistor or power amplifier applications.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: ETAMOTA CORPORATION
    Inventor: Thomas W. Tombler, JR.
  • Patent number: 7776307
    Abstract: Single-walled carbon nanotube transistor devices, and associated methods of making such devices include a porous structure for the single-walled carbon nanotubes. The porous structure may be anodized aluminum oxide or another material. Electrodes for source and drain of a transistor are provided at opposite ends of the single-walled carbon nanotube devices. A concentric gate surrounds at least a portion of a nanotube in a pore. A transistor of the invention may be especially suited for power transistor or power amplifier applications.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: August 17, 2010
    Assignee: Etamota Corporation
    Inventor: Thomas W. Tombler
  • Patent number: 7736943
    Abstract: During fabrication of single-walled carbon nanotube transistor devices, a porous template with numerous parallel pores is used to hold the single-walled carbon nanotubes. The porous template or porous structure may be anodized aluminum oxide or another material. A gate region may be provided one end or both ends of the porous structure. The gate electrode may be formed and extend into the porous structure.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: June 15, 2010
    Assignee: Etamota Corporation
    Inventors: Thomas W. Tombler, Jr., Brian Y. Lim
  • Patent number: 7732290
    Abstract: During fabrication of single-walled carbon nanotube transistor devices, a porous template with numerous parallel pores is used to hold the single-walled carbon nanotubes. The porous template or porous structure may be anodized aluminum oxide or another material. A gate region may be provided one end or both ends of the porous structure. The gate electrode may be formed and extend into the porous structure.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: June 8, 2010
    Assignee: Etamota Corporation
    Inventors: Thomas W. Tombler, Jr., Brian Y. Lim