Abstract: Provided are methods, reagents, and kits for evaluating cancer, such as prostate cancer, in a subject. Disclosed methods of evaluating cancer include methods of diagnosing cancer, methods of prognosticating cancer and methods of assessing the efficacy of cancer treatment. The methods include assaying a biological sample for methylation of a CpG island associated with specified genes. Provided reagents and kits include primers suitable for amplifying at least a portion of a target CpG islands associated with specified genes.
Abstract: Provided are methods, reagents, and kits for evaluating cancer, such as prostate cancer, in a subject. Disclosed methods of evaluating cancer include methods of diagnosing cancer, methods of prognosticating cancer and methods of assessing the efficacy of cancer treatment. The methods include assaying a biological sample for methylation of a CpG island associated with specified genes. Provided reagents and kits include primers suitable for amplifying at least a portion of a target CpG islands associated with specified genes.
Type:
Application
Filed:
April 25, 2013
Publication date:
October 31, 2013
Applicant:
EUCLID DIAGNOSTICS LLC
Inventors:
Wadiha FREIJE, Igor BRIKUN, Deborah NUSSKERN
Abstract: Provided are methods, reagents, and kits for evaluating cancer, such as prostate cancer, in a subject. Disclosed methods of evaluating cancer include methods of diagnosing cancer, methods of prognosticating cancer and methods of assessing the efficacy of cancer treatment. The methods include assaying a biological sample for methylation of a CpG island associated with specified genes. Provided reagents and kits include primers suitable for amplifying at least a portion of a target CpG islands associated with specified genes.
Abstract: Provided are methods, reagents, and kits for evaluating cancer, such as prostate cancer, in a subject. Disclosed methods of evaluating cancer include methods of diagnosing cancer, methods of prognosticating cancer and methods of assessing the efficacy of cancer treatment. The methods include assaying a biological sample for methylation of a CpG island associated with specified genes. Provided reagents and kits include primers suitable for amplifying at least a portion of a target CpG islands associated with specified genes.
Abstract: The invention provides a method of separating non-ribosomal transcribed RNA (nrRNA) fragments from ribosomal RNA (rRNA) and rRNA fragments. The method comprises (i) providing a sample comprising rRNA, rRNA fragments, and nrRNA fragments, and (ii) providing a plurality of probes. The probes hybridize to RNA targeting sequences of at least 50% of the contiguous regions of the rRNA and to rRNA fragments comprising the rRNA targeting sequences. The method further comprises (iii) adding the plurality of probes to the sample, (iv) hybridizing the probes to the rRNA and rRNA fragments to form rRNA-probe complexes and rRNA fragment-probe complexes, and (v) separating the rRNA-probe complexes and rRNA fragment-probe complexes. The invention also provides a method of amplifying an nrRNA fragment, a method of analyzing nrRNA expression, a method of determining the level of nrRNA in a sample, and a kit and system useful in any of the foregoing methods.
Abstract: A method for copying the methylation patterns of molecules of genomic DNA (MGD) during isothermal amplification of the MGD comprising obtaining MGD, copying the methylation patterns of the MGD using a DNA methylation-maintenance enzyme, while isothermally amplifying the MGD using a DNA polymerase with strand displacement activity, under conditions that simultaneously promote activity of the DNA methylation-maintenance enzyme and the DNA polymerase; a method for copying the methylation patterns in double-stranded DNA molecules during isothermal amplification of the DNA molecules comprising obtaining DNA molecules, contacting the DNA molecules with transposable elements and an enzyme, which can randomly insert the transposable elements into the DNA molecules, copying the methylation patterns of the DNA molecules using a DNA methylation-maintenance enzyme, while isothermally amplifying the DNA molecules using a DNA polymerase with strand displacement activity, under conditions that simultaneously promote activit
Abstract: Provided are methods, reagents, and kits for evaluating cancer, such as prostate cancer, in a subject. Disclosed methods of evaluating cancer include methods of diagnosing cancer, methods of prognosticating cancer and methods of assessing the efficacy of cancer treatment. The methods include assaying a biological sample for methylation of a CpG island associated with specified genes. Provided reagents and kits include primers suitable for amplifying at least a portion of a target CpG islands associated with specified genes.
Abstract: A method for copying the methylation patterns of molecules of genomic DNA (MGD) during isothermal amplification of the MGD comprising obtaining MGD, copying the methylation patterns of the MGD using a DNA methylation-maintenance enzyme, while isothermally amplifying the MGD using a DNA polymerase with strand displacement activity, under conditions that simultaneously promote activity of the DNA methylation-maintenance enzyme and the DNA polymerase; a method for copying the methylation patterns in double-stranded DNA molecules during isothermal amplification of the DNA molecules comprising obtaining DNA molecules, contacting the DNA molecules with transposable elements and an enzyme, which can randomly insert the transposable elements into the DNA molecules, copying the methylation patterns of the DNA molecules using a DNA methylation-maintenance enzyme, while isothermally amplifying the DNA molecules using a DNA polymerase with strand displacement activity, under conditions that simultaneously promote activit