Abstract: A reduced toxicity ethylene glycol-based antifreeze/heat transfer fluid concentrate is provided comprised of ethylene glycol, a polyhydric alcohol having a boiling point above about 150° C. and that acts as an alcohol dehydrogenase inhibitor, such as propylene glycol or glycerol, and selected additives. The antifreeze/heat transfer fluid concentrate may be combined with water to form a coolant solution for use in internal combustion engines.
Abstract: A non-aqueous, reduced toxicity polyhydric alcohol based heat transfer fluid is provided comprised of at least one polyhydric alcohol that acts as an ADH enzyme inhibitor, such as for example propylene glycol, thereby reducing the toxicity of ethylene glycol if ethylene glycol. The heat transfer fluid may also include corrosion inhibitors that are soluble in the polyhydric alcohols used for the heat transfer fluid. The heat transfer fluid may be used as a coolant in internal combustion engines such as automobile engines, a coolant for cooling electrical or electronic components, as a heat transfer fluid for solar energy heating systems, or a heat transfer fluid for maintaining temperatures in industrial processes. A low toxicity preparation fluid for absorbing water from heat exchange systems prior to installation of the heat transfer fluid is also provided that is comprised of ethylene glycol and at least one polyhydric alcohol, preferably propylene glycol, that acts as an ADH enzyme inhibitor.
Abstract: A method for cooling an internal combustion engine using a reduced toxicity, ethylene glycol and water based heat transfer fluid is provided. A heat transfer fluid is formulated comprising water and a glycol component consisting of ethylene glycol and either propylene glycol or glycerol. Propylene glycol may be provided in an amount between 5% to less than 30% of the total weight of the glycol component. Glycerol may be provided in an amount between 5% to 20% of the total weight of the glycol component. The glycol component is less toxic than 10,000 mg/kg on an acute LD50(rat) oral toxicity basis. The water comprises between 40% and 70% by weight of the total weight of the heat transfer fluid. The cooling system of the internal combustion engine is substantially filled with the heat transfer fluid such that the heat transfer fluid absorbs heat that is produced by the internal combustion engine and releases the absorbed heat to the atmosphere.
Abstract: A non-aqueous, reduced toxicity diol based heat transfer fluid is provided comprised of at least one diol that acts as an antidote for ethylene glycol poisoning, such as propylene glycol. The heat transfer fluid may also include corrosion inhibitors that are soluble in the diols used for the heat transfer fluid. The heat transfer fluid may be used as a coolant in internal combustion engines such as automobile engines.
Abstract: In a heat transfer system (10), an upper coolant chamber (31) and a lower coolant chamber (24) of a typical engine, such as an internal combustion engine, fuel cell, boiler, or other engine for converting fuel to thermal energy, are formed adjacent to the heat-rejecting components of the engine and are hermetically sealed to prevent exposure of heat-transfer liquid within the chambers to the engine's ambient atmosphere. The heat-transfer liquid is preferably a substantially anhydrous, boilable liquid having a saturation temperature higher than that of water, and the heat-transfer liquid is pumped at a predetermined flow rate, and distributed through the heat-transfer fluid chamber so that the liquid within the chambers substantially condenses the heat-transfer liquid vaporized by the heat-rejecting components of the engine.
Abstract: In an engine cooling system, an upper coolant chamber and a lower coolant chamber of a typical engine, such as an internal combustion engine or fuel cell, are formed adjacent to the heat-rejecting components of the engine and are hermetically sealed to prevent exposure of coolant within the chambers to the engine's ambient atmosphere. The coolant is preferably a substantially anhydrous, boilable liquid coolant having a saturation temperature higher than that of water, and the coolant is pumped at a predetermined flow rate, and distributed through the coolant chambers so that the liquid coolant within the chambers substantially condenses the coolant vaporized by the heat-rejecting components of the engine.
Abstract: In an engine cooling system, an upper coolant chamber and a lower coolant chamber of a typical engine, such as an internal combustion engine or fuel cell, are formed adjacent to the heat-emitting components of the engine, and a substantially anhydrous, boilable liquid coolant having a saturation temperature higher than that of water is received within the engine coolant chambers. A coolant expansion reservoir defining an expansion chamber is coupled in fluid communication between the engine coolant chambers and the engine's ambient atmosphere for receiving coolant from the engine coolant chambers and permitting coolant flow between the expansion chamber and engine coolant chambers with thermal expansion and contraction of the coolant.
Abstract: In an engine cooling system, an upper coolant chamber and a lower coolant chamber of a typical engine, such as an internal combustion engine or fuel cell, are formed adjacent to the heat-emitting components of the engine, and a substantially anhydrous, boilable liquid coolant having a saturation temperature higher than that of water is received within the engine coolant chambers. A coolant expansion reservoir defining an expansion chamber is coupled in fluid communication between the engine coolant chambers and the engine's ambient atmosphere for receiving coolant from the engine coolant chambers and permitting coolant flow between the expansion chamber and engine coolant chambers with thermal expansion and contraction of the coolant.