Abstract: A machine learning prediction system can analyze a dataset of users with self-reported symptoms and associated data from a wearable device to impact measure the impact of an acute health condition (such as the flu) at the population level. The machine learning prediction system can train a machine learning model to recognize individual acute health condition patterns based on differences in user activity with respect to the characteristics of determined baseline periods. For example, per-individual normalized change with respect to baseline aggregated at the population level can be used to determine individual acute health condition patterns and predict the onset of certain acute health conditions using a trained machine learning model. In response to predictions, the machine learning prediction system can take interventions to manage the impact of a predicted acute health condition on an individual.
Abstract: Disclosed is a method comprising accessing, by a machine learning system, a set of data records for a plurality of users, the data records representative of physical statistics measured for each of the plurality of users over a time period. At least a subset of the data records comprises patterns of missing data for at least a portion of the time period. The method also comprises generating a set of masked data records by masking a subset of the data records in accordance with a pattern of natural missingness from a data record. The method also comprises generating, by the machine learning system, a set of learned representations from at least the set of masked data records. Finally, the method comprises fine tuning, by the machine learning system, a machine learning model using the set of learned representations, the machine learning model configured to perform a downstream machine learning task.
Type:
Grant
Filed:
January 18, 2023
Date of Patent:
October 15, 2024
Assignee:
Evidation Health, Inc.
Inventors:
Luca Foschini, Filip Jankovic, Raghunandan Melkote Kainkaryam, Juan Ignacio Oguiza Mendez, Arinbjörn Kolbeinsson
Abstract: A machine learning prediction system can analyze a dataset of users with self-reported symptoms and associated data from a wearable device to impact measure the impact of an acute health condition (such as the flu) at the population level. The machine learning prediction system can train a machine learning model to recognize individual acute health condition patterns based on differences in user activity with respect to the characteristics of determined baseline periods. For example, per-individual normalized change with respect to baseline aggregated at the population level can be used to determine individual acute health condition patterns and predict the onset of certain acute health conditions using a trained machine learning model. In response to predictions, the machine learning prediction system can take interventions to manage the impact of a predicted acute health condition on an individual.
Abstract: An active learning system can analyze a dataset of users with self-reported symptoms and associated data from wearable devices to train a baseline machine learning model to predict symptoms of a chronic health condition based on wearable device data. For example, symptoms can be predicted in terms of lost physical activity, increased sleep requirements, and changes in resting heart rate. Using the baseline model, the active learning system can train and refine individual user-specific models to predict the onset of chronic health condition symptoms over time. These models can be used to predict symptoms for inclusion in a log of symptoms for the target user (which may be used by a healthcare provider to personalize treatment for the target user) or to provide interventions to the user (for example, warning of a predicted severe symptom day). In some implementations individual chronic health condition models are maintained and updated using active learning techniques.
Type:
Grant
Filed:
December 4, 2020
Date of Patent:
July 2, 2024
Assignee:
Evidation Health, Inc.
Inventors:
Luca Foschini, Andrea Varsavsky, Raghunandan Melkote Kainkaryam