Abstract: A positioning method, as well as the system of base stations (T1,T2,T3) and detector (I) is based on measuring the propagation time difference of externally controlled electromagnetic pulses (F1,F2,F3) and the arrival signals of the controlled base station during a measurement cycle (t1+t2). In one embodiment, a reference clock is not required for measuring propagation time differences, but instead, accurate fixed distances between base stations can be used as a reference. System calibration is rarely performed. It checks the mutual locations of base stations. This may be partially automated. The positioning system does not require any sensors.
Abstract: A positioning method, as well as the system of base stations (T1,T2,T3) and detector (I) is based on measuring the propagation time difference of externally controlled electromagnetic pulses (F1,F2,F3) and the arrival signals of the controlled base station during a measurement cycle (t1+t2). In one embodiment, a reference clock is not required for measuring propagation time differences, but instead, accurate fixed distances between base stations can be used as a reference. System calibration is rarely performed. It checks the mutual locations of base stations. This may be partially automated. The positioning system does not require any sensors.