Abstract: The present invention is related to a method for forming a metal silicide layer on a textured silicon substrate surface. The method includes providing a metal layer on a textured silicon substrate and performing a pulsed laser annealing step providing at least one UV laser pulse with a laser fluence in the range between 0.1 J/cm2 and 1.5 J/cm2 and with a laser pulse duration in the range between 1 ns and 10 ms. Then, the method includes converting at least part of the metal layer into a metal silicide layer. In addition, the present invention is related to the use of such a method in a process for fabricating a photovoltaic cell, wherein the dielectric layer is a surface passivation layer, or wherein the dielectric layer is an antireflection coating.
Type:
Grant
Filed:
November 23, 2012
Date of Patent:
November 15, 2016
Assignees:
IMEC, Katholieke Universiteit Leuven, Excico Group NV
Inventors:
Loic Tous, Monica Aleman, Joachim John, Thierry Emeraud
Abstract: The invention relates to a pumped electron source (1) that includes an ionization chamber (4), an acceleration chamber (2) with an electrode (3) for extracting and accelerating primary ions and forming a secondary-electron beam, characterized in that the pumped electron source (1) includes a power supply (11) adapted for applying to the electrode (3) a positive voltage for urging a primary plasma (17) outside the acceleration chamber (2), and a negative voltage pulse for extracting and accelerating the primary ions and forming a secondary-electron beam.
Abstract: The power supply device (14) for an ion-bombardment-induced secondary-emission electron source in a low-pressure chamber includes a control input, two high-voltage outputs, an element for generating a plurality of positive pulses on a high-voltage output, and an element for generating a negative pulse on the other high-voltage output after at least some of the positive pulses.
Abstract: A method for fabricating a photovoltaic device, including depositing a TCO-layer on a substrate and annealing the TCO layer by laser irradiation having irradiation parameters, wherein the irradiation parameters are selected such that the annealing includes increasing the haze % of the TCO layer compared to the as deposited TCO layer. Additionally, a TCO layer having a haze % of at least 2% in the visible light wavelength range and a surface roughness of less than 0 nanometer RMS, and a photovoltaic device including such TCO-layer.
Abstract: A method for forming a selective contact for a photovoltaic cell is disclosed. The method includes forming a doped contact layer at the surface of a semiconductor substrate and annealing a portion of the doped contact layer with a laser beam, the portion having a 2D-pattern corresponding to at least a portion of a respective selective contact grid. Wherein the laser beam is pulsed and shaped to the 2D-pattern. A photovoltaic cell having a selective contact formed by the method is also provided.
Abstract: A method for manufacturing TF-PV material by providing a TF-PV material layer having a degree of crystallinity, and irradiating a surface region of the TF-PV material layer using a laser source having irradiation parameter selected such that the degree of crystallinity is increased at least at a top layer of the surface region.
Type:
Application
Filed:
December 21, 2009
Publication date:
February 16, 2012
Applicant:
EXCICO GROUP - RCH (RESEARCH CAMPUS HASSELT)
Abstract: Filament electric discharge ion source (1) including an ionization chamber (3) provided with internal walls and configured so as to contain a gas to be ionized, filaments (13) placed in the ionization chamber (3) and a power supply (19) for applying voltage to the filaments, in which the filaments (13) are placed so as to be substantially parallel to one another and connected to the power supply (19) through the internal walls, at least one first filament being connected to the power supply through a first internal wall and at least one second filament being connected to the power supply through a second internal wall opposite the first internal wall.
Abstract: The power supply device (14) for an ion-bombardment-induced secondary-emission electron source in a low-pressure chamber comprises a control input, two high-voltage outputs, a means for generating a plurality of positive pulses on a high-voltage output, and a means for generating a negative pulse on the other high-voltage output after at least some of the positive pulses.
Abstract: The invention relates to a pumped electron source (1) that comprises an ionisation chamber (4), an acceleration chamber (2) with an electrode (3) for extracting and accelerating primary ions and forming a secondary-electron beam, characterised in that said pumped electron source (1) comprises a power supply (11) adapted for applying to said electrode (3) a positive voltage for urging a primary plasma (17) outside the acceleration chamber (2), and a negative voltage pulse for extracting and accelerating the primary ions and forming a secondary-electron beam.