Patents Assigned to Exergen Corporation
  • Publication number: 20140046620
    Abstract: A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Patent number: 8577642
    Abstract: A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: November 5, 2013
    Assignee: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Publication number: 20120197585
    Abstract: A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 2, 2012
    Applicant: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Publication number: 20120183013
    Abstract: There are many industrial applications in which non-contact temperature sensing is useful for increasing production speed and quality, such as printing, laminating, extrusion, and metal forming. Disclosed is a non-contact temperature determining apparatus which uses two wide wavelength bands integrating sensors to determine the radiance ratio of a target and thereby determine a corresponding temperature of the target. Also disclosed is a non-contact temperature determining apparatus in which a beam splitter passes one wide wavelength band to a sensor and reflects another distinct wide wavelength band to another sensor from which temperature can be determined. A disclosed embodiment of the dual waveband temperature detector improves upon traditional and currently available ratio pyrometers by further reducing the cost of the system, making installation and use easier, and improving temperature detection for low temperature industrial applications.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 19, 2012
    Applicant: Exergen Corporation
    Inventors: Alexander Stein, Francesco Pompei
  • Patent number: 8160836
    Abstract: A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: April 17, 2012
    Assignee: Exergen Corporation
    Inventors: Francesco Pompei, Janette H. Lee, Jason N. Jarboe
  • Patent number: 7787938
    Abstract: Body temperature measurements are obtained by scanning a thermal radiation sensor across the side of the forehead over the temporal artery. A peak temperature measurement is processed to compute an internal temperature of the body as a function of ambient temperature and the sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature through a minimum in the range of 96° F. and 100° F. The radiation sensor views the target surface through an emissivity compensating cup which is spaced from the skin by a circular lip of low thermal conductivity.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: August 31, 2010
    Assignee: Exergen Corporation
    Inventor: Francesco Pompei
  • Publication number: 20080200830
    Abstract: Body temperature measurements are obtained by scanning a thermal radiation sensor across the side of the forehead over the temporal artery. A peak temperature measurement is processed to compute an internal temperature of the body as a function of ambient temperature and the sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature through a minimum in the range of 96° F. and 100° F. The radiation sensor views the target surface through an emissivity compensating cup which is spaced from the skin by a circular lip of low thermal conductivity.
    Type: Application
    Filed: January 25, 2008
    Publication date: August 21, 2008
    Applicant: EXERGEN CORPORATION
    Inventor: Francesco Pompei
  • Patent number: 7346386
    Abstract: Body temperature measurements are obtained by scanning a thermal radiation sensor across the side of the forehead over the temporal artery. A peak temperature measurement is processed to compute an internal temperature of the body as a function of ambient temperature and the sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature through a minimum in the range of 96° F. and 100° F. The radiation sensor views the target surface through an emissivity compensating cup which is spaced from the skin by a circular lip of low thermal conductivity.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: March 18, 2008
    Assignee: Exergen Corporation
    Inventor: Francesco Pompei
  • Patent number: 7314309
    Abstract: A body temperature detector is particularly suited to axillary temperature measurements of adults. The radiation sensor views a target surface area of the body and electronics compute an internal temperature of the body as a function of ambient temperature and sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature to account for varying perfusion rate. Preferably, the coefficient varies from a normal of about 0.13 through a range to include 0.09. The ambient temperature used in the function is assumed at about 80° F. but modified with detector temperature weighted by 20%.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: January 1, 2008
    Assignee: Exergen Corporation
    Inventor: Francesco Pompei
  • Publication number: 20060062274
    Abstract: Tympanic temperature measurements are obtained from the output of a radiation sensor mounted in an extension from a housing. The housing has a temperature display and supports electronics for responding to sensed radiation. The sensor is mounted in an improved extension which is shaped to fit into smaller ear canals, such as a child's ear canal or a swollen adult ear canal. Within the extension, the sensor is positioned in a highly conductive environment and receives radiation from an external target through a tube. Electronics determine the target temperature based on the sensor output signal and a temperature sensor signal.
    Type: Application
    Filed: June 28, 2005
    Publication date: March 23, 2006
    Applicant: Exergen Corporation
    Inventor: Francesco Pompei
  • Patent number: 6932775
    Abstract: A disposable cap for a body temperature detector includes a body having a viewing end and a retaining end. The retaining end includes an inward protrusion that expands over a wider portion of an end of the detector and contracts after the retaining end has passed over the wider portion to snugly secure the cap on the detector. The cap further includes a flange with an aperture therethrough adjacent the viewing end to permit a radiation sensor of the detector to view a target surface. Preferably, the cap is sufficiently large so as to not be insertable into an ear of a human. The cap is formed from a sheet of material, preferably by thermoforming, from a material such as polypropylene, polyethylene, polystyrene, or other similar material which has relatively low hardness and low thermal conductivity properties. The cap has a generally uniform thickness of about 0.020 inch.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: August 23, 2005
    Assignee: Exergen Corporation
    Inventors: Francesco Pompei, Marybeth A. Pompei
  • Publication number: 20050065451
    Abstract: A disposable cap for a body temperature detector includes a body having a viewing end and a retaining end. The retaining end includes an inward protrusion that expands over a wider portion of an end of the detector and contracts after the retaining end has passed over the wider portion to snugly secure the cap on the detector. The cap further includes a flange with an aperture therethrough adjacent the viewing end to permit a radiation sensor of the detector to view a target surface. Preferably, the cap is sufficiently large so as to not be insertable into an ear of a human. The cap is formed from a sheet of material, preferably by thermoforming, from a material such as polypropylene, polyethylene, polystyrene, or other similar material which has relatively low hardness and low thermal conductivity properties. The cap has a generally uniform thickness of about 0.020 inch.
    Type: Application
    Filed: July 20, 2004
    Publication date: March 24, 2005
    Applicant: Exergen Corporation
    Inventors: Francesco Pompei, Marybeth Pompei
  • Publication number: 20050031014
    Abstract: A body temperature detector is particularly suited to axillary temperature measurements of adults. The radiation sensor views a target surface area of the body and electronics compute an internal temperature of the body as a function of ambient temperature and sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature to account for varying perfusion rate. Preferably, the coefficient varies from a normal of about 0.13 through a range to include 0.09. The ambient temperature used in the function is assumed at about 80° F. but modified with detector temperature weighted by 20%.
    Type: Application
    Filed: May 24, 2004
    Publication date: February 10, 2005
    Applicant: Exergen Corporation
    Inventor: Francesco Pompei
  • Publication number: 20040152991
    Abstract: Body temperature measurements are obtained by scanning a thermal radiation sensor across the side of the forehead over the temporal artery. A peak temperature measurement is processed to compute an internal temperature of the body as a function of ambient temperature and the sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature through a minimum in the range of 96° F. and 100° F. The radiation sensor views the target surface through an emissivity compensating cup which is spaced from the skin by a circular lip of low thermal conductivity.
    Type: Application
    Filed: October 14, 2003
    Publication date: August 5, 2004
    Applicant: Exergen Corporation
    Inventor: Francesco Pompei
  • Publication number: 20040122338
    Abstract: Tympanic temperature measurements are obtained from the output of a radiation sensor mounted in an extension from a housing. The housing has a temperature display and supports electronics for responding to sensed radiation. The sensor is mounted in an improved extension which is shaped to fit into smaller ear canals, such as a child's ear canal or a swollen adult ear canal. Within the extension, the sensor is positioned in a highly conductive environment and receives radiation from an external target through a tube. Electronics determine the target temperature based on the sensor output signal and a temperature sensor signal.
    Type: Application
    Filed: September 19, 2003
    Publication date: June 24, 2004
    Applicant: Exergen Corporation
    Inventor: Francesco Pompei
  • Publication number: 20040114661
    Abstract: A method and apparatus for maintaining a viewing window of a detector substantially clean includes enclosing the detector within a housing, and moving a target surface relative to the viewing window to create an airflow adjacent the viewing window. The housing can include an aperture through which the viewing window of the sensor views the target surface. Motion of the target surface creates an airflow velocity adjacent the viewing window for maintaining the viewing window substantially clean. To increase the accuracy of the detector, a high emissivity area is provided on an outside surface of the housing which faces the target surface.
    Type: Application
    Filed: August 29, 2003
    Publication date: June 17, 2004
    Applicant: Exergen Corporation
    Inventor: Francesco Pompei
  • Publication number: 20030212341
    Abstract: An infrared detector has a probe having curved surfaces which slide readily into a neonate axilla. The probe is covered by a disposable cover, or a bag completely encloses the infrared detector. The bag has a pleated end surface, through which the detector views the skin, and a flap at a rear surface to close an opening which receives the detector.
    Type: Application
    Filed: February 25, 2003
    Publication date: November 13, 2003
    Applicant: Exergen Corporation
    Inventors: Francesco Pompei, Marybeth A. Pompei
  • Patent number: 6641301
    Abstract: A method and apparatus for maintaining a viewing window of a detector substantially clean includes enclosing the detector within a housing, and moving a target surface relative to the viewing window to create an airflow adjacent the viewing window. The housing can include an aperture through which the viewing window of the sensor views the target surface. Motion of the target surface creates an airflow velocity adjacent the viewing window for maintaining the viewing window substantially clean. To increase the accuracy of the detector, a high emissivity area is provided on an outside surface of the housing which faces the target surface.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: November 4, 2003
    Assignee: Exergen Corporation
    Inventor: Francesco Pompei
  • Publication number: 20030169800
    Abstract: A body temperature detector is particularly suited to axillary temperature measurements of adults. The radiation sensor views a target surface area of the body and electronics compute an internal temperature of the body as a function of ambient temperature and sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature to account for varying perfusion rate. Preferably, the coefficient varies from a normal of about 0.13 through a range to include 0.09. The ambient temperature used in the function is assumed at about 80° F. but modified with detector temperature weighted by 20%.
    Type: Application
    Filed: November 20, 2002
    Publication date: September 11, 2003
    Applicant: Exergen Corporation
    Inventor: Francesco Pompei
  • Patent number: 6617581
    Abstract: A radiation detector employs a thermopile having a potentiometer for calibrating the thermopile output to best suit a particular output meter and sensing application. A thermocouple may be connected in series with the thermopile. The output of the thermopile is calibrated to best match a linear function which intersects the thermopile output function at a temperature in the center of a temperature range of interest. A total output signal of the detector is the sum of the thermopile signal and the thermocouple signal, and is indicative of the temperature of a target emitting radiation sensed by the thermopile. The series connection of the thermopile and the thermocouple allow the thermopile hot junction temperature to be referenced to the cold junction temperature of the thermocouple. Thus, the reference temperature may be remote from the thermopile sensor. A filtering lens may be used to prevent short wavelength radiation from reaching the thermopile sensor, improving the linearity of the thermopile response.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: September 9, 2003
    Assignee: Exergen Corporation
    Inventor: Francesco Pompei