Abstract: A laser processing apparatus is provided. The laser processing apparatus includes a laser processing head having a transmission window, an opening portion, an outlet hole, a first vent hole and a second vent hole. The transmission window transmits laser light by which a processing object is irradiated. The opening portion passes the transmitted laser light to a bottom portion of the laser processing head. The outlet hole discharges an atmosphere in the vicinity of a laser light irradiation region of the processing object to the outside. The first vent hole directs gas into the vicinity of the laser light irradiation region. The second vent hole discharges the atmosphere in the vicinity of the laser light irradiation region. Debris generated from the processing object is discharged from the outlet hole and the second vent hole that are continuous with the opening portion provided at the bottom portion of the laser processing head.
Abstract: The invention firstly comprises a method of ablation processing including a step of ablating a region of a substrate (1) by way of a laser beam (3) characterized by a further step of removing debris ablated from the region (1) by way of a flow of a fluid (7), namely a gas or vapour, a liquid or a combination of these, wherein the flow of fluid (7) is directed to flow over the region so as to entrap debris and thereafter to remove the entrapped debris from the region by directing the flow of fluid with any entrapped debris away from region along a predetermined path (6) avoiding subsequent deposition of entrapped debris on the substrate.
Abstract: A laser processing apparatus is provided. The laser processing apparatus is for performing pattern processing of a transparent conductive film that is formed on a multilayer film on a substrate by using laser light, includes debris extraction module having a vortex generation mechanism that generates a vortex flow by directing gas into the vicinity of a laser-irradiated portion of the transparent conductive film. The debris extraction module is disposed close to the substrate, and debris before deposition and after deposition on the substrate, which is generated by laser irradiation, is entrapped into the vortex flow to be extracted to the outside with the gas.
Abstract: A method of laser micro-machining a work piece, with a laser, including the steps of: locating the workpiece on a carrier forming a part of a transport system, the carrier can be displaced along a path parallel to an X-axis of the workpiece, a Y-axis lying transverse the path, and a Z-axis lying transverse the path; focusing an image generated by an output beam from the laser at a working datum position defined relative to the path which path is established by the transport system to traverse the first datum position; a plane defined by the X- and Y-axis lying substantially perpendicular to the output beam; and displacing the workpiece along the path by way of the transport system so as to enable the work-piece to be subject to micro-machining by way of the laser.
Abstract: This invention relates to using mid-infrared high-power pulsed laser radiation sources for drilling high-quality microvia interconnection holes in printed circuit (wiring) boards and other electrical circuit packages.