Abstract: An apparatus for, and a method of controlling magnetic anisotropy in a magnetic material comprises directing a layer of powdered metal material to a heat conducting substrate. Electromagnetic energy is applied to the powdered material sufficient to melt the powdered material which is subsequently cooled to create a solid layer on the substrate. An external magnetic field is applied to the material during at least the cooling step so as to imprint the solid magnetic material layer with magnetic anisotropy. Various novel magnetic structures can be fabricated using the technique.
Type:
Grant
Filed:
December 10, 2014
Date of Patent:
June 25, 2019
Assignee:
EXMET AB
Inventors:
Mattias Unosson, Björgvin Hjörvarsson, Vassilios Kapaklis, Fridrik Magnus
Abstract: An apparatus for, and a method of controlling magnetic anisotropy in a magnetic material comprises directing a layer of powdered metal material to a heat conducting substrate. Electromagnetic energy is applied to the powdered material sufficient to melt the powdered material which is subsequently cooled to create a solid layer on the substrate. An external magnetic field is applied to the material during at least the cooling step so as to imprint the solid magnetic material layer with magnetic anisotropy. Various novel magnetic structures can be fabricated using the technique.
Type:
Application
Filed:
December 10, 2014
Publication date:
October 20, 2016
Applicant:
EXMET AB
Inventors:
Mattias UNOSSON, Björgvin HJÖRVARSSON, Vassilios KAPAKLIS, Fridrik MAGNUS
Abstract: A method of producing three-dimensional bodies which wholly or for selected parts consists of a composite of crystalline or nanocrystalline metal particles in a matrix of amorphous metal. A metal powder layer (4) is applied onto a heat-conducting base (1, 13) and limited areas of the layer is melted successively by means of a radiation gun and cooled so that they can be made to solidify into amorphous metal. In connection with the melting of one or several of the limited areas, the radiation gun is regulated so that the melted area is cooled in accordance with a stipulated time-temperature curve in order to form a composite of crystalline or nanocrystalline metal particles in a matrix of amorphous metal. The method is repeated until a continuous layer, which contains composite metal to a desired extent, is formed. A new powder layer (4) is applied and the method is repeated, the new layer being fused to the underlying layer for successive construction of the three-dimensional body.