Patents Assigned to ExxonMobil Chemical Patents Inc.
  • Patent number: 11952480
    Abstract: In some embodiments, the present disclosure provides a composition comprising 1) about 97.5 wt % to about 99.9 wt % of a first polyethylene having a density of about 0.91 g/cm3 to about 0.94 g/cm3, and a melt strength of about 10 mN or greater; and 2) about 0.1 wt % to about 2.5 wt % of a second polyethylene having an Mw of about 500,000 g/mol or more. In some embodiments, the composition is a film. In some embodiments, the present disclosure provides a method of making a composition comprising blending a first polyethylene of any embodiment described herein and a second polyethylene of any embodiment described herein.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: April 9, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Johannes M. Soulages, Arnold Lustiger, Thomas T. Sun, Pamela J. Wright, Madhavi Vadlamudi, Alexander I. Norman, Adriana S. Silva, David M. Fiscus, Timothy D. Shaffer
  • Patent number: 11945888
    Abstract: A method for monitoring polymerization processes can include reacting by polymerization a feedstock in the presence of a catalyst in a reactor to produce an effluent comprising a polymer and a solvent; measuring a density of the effluent; and calculating a monomer conversion rate and/or a polymerization rate for the polymerization based on the density of the effluent. A system for monitoring polymerization processes can include a reactor containing an effluent comprising a solvent, a polymer, and a monomer; a flash vessel fluidly coupled to the reactor to receive the effluent from the reactor; and an inline density meter fluidly coupled to the reactor, placed between the reactor and the flash vessel, and configured to measure a density of the effluent.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: April 2, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yifeng Hong, Jay L. Reimers
  • Patent number: 11939543
    Abstract: In an embodiment, a method for decreasing reactor fouling in a steam cracking process is provided. The method includes steam cracking a hydrocarbon feed to obtain a quench oil composition comprising a concentration of donatable hydrogen of 0.5 wt. % or more based on a total weight percent of the quench oil composition; exposing a steam cracker effluent flowing from a pyrolysis furnace to the quench oil composition to form a mixture; and fractionating the mixture in a separation apparatus to obtain a steam cracker tar. In another embodiment, a hydrocarbon mixture is provided. The hydrocarbon mixture includes a mid-cut composition.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: March 26, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, James R. Lattner, Frank Cheng-Yu Wang, Bryan Tiedemann, Renyuan Yu
  • Patent number: 11932816
    Abstract: In some examples, coke, tar, or a mixture thereof can be removed from a furnace effluent. The furnace effluent can include coke, tar, or the mixture thereof and can be contacted with a first quench liquid to produce a quenched mixture, wherein the first quench liquid can include a first steam cracker naphtha, a first steam cracker gas oil, a first steam cracker quench oil, or a mixture thereof. The quenched mixture can be introduced into a first inlet of a centrifugal separator drum. A vapor product and a centrifugal separator drum bottoms can be separated from the quenched mixture, wherein the centrifugal separator drum bottoms can include at least a portion of the coke, tar, or the mixture thereof. The centrifugal separator drum bottoms can be recovered from a first outlet of the centrifugal separator drum.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: March 19, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mark A. Rooney, Darian E. Orozco
  • Publication number: 20240082803
    Abstract: A fluidized reactor system includes a reactor containing a fluidized bed situated above a distributor plate arranged within the reactor, a fluidizing gas fed into the fluidized bed via the distributor plate to cause uniform fluidization of the fluidized bed and promote creation of solid polymeric granules, and a valve assembly penetrating a sidewall of the reactor to remove a mixture of the fluidizing gas and the solid polymeric granules from the fluidized bed. The valve assembly is coupled to the sidewall at a downward angle relative to the sidewall such that an upward-facing opening of the valve assembly extends into the fluidized bed.
    Type: Application
    Filed: October 21, 2020
    Publication date: March 14, 2024
    Applicant: EXXONMOBIL CHEMICAL PATENTS INC.
    Inventors: Kevin W. LAWSON, Brett A. SMITH, Jason M. REVERENDO
  • Patent number: 11926605
    Abstract: A 5,5?-Di-(protected)-2,2?-bifuran: wherein each R1 is independently an unsubstituted or substituted 5- or 6-member 1,3-dioxo-2-yl ring radical. Processes for making the bifuran include coupling 2-(protected)-furfural. Processes for using the bifuran include deprotection, functionalization, and/or polymerization to form a polyester. The polyester can be a renewable, high-performing polyester offering a combination of low cost of production, high sustainability, and excellent performance.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 12, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Stephen T. Cohn, Michael Salciccioli, Crisita Carmen H. Atienza, Alan A. Galuska
  • Patent number: 11926696
    Abstract: Low molecular weight, high Tg resins, with applications including tire additives and adhesives. An oligomer is obtained by ring opening metathesis polymerization (ROMP) of a sterically encumbered cyclic monomer with an olefinic chain transfer agent. The sterically encumbered cyclic monomer and the olefinic chain transfer agent are present in the polymerization at a molar ratio of from 2:1 to about 40:1. Also, methods for making the oligomer by ROMP.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: March 12, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Eric D. Metzger, Mika L. Shiramizu, Brian J. Rohde, Alan A. Galuska
  • Patent number: 11926802
    Abstract: Provided is a lubricating oil composition that includes a major amount of a lubricant base oil and a minor amount of a viscosity index improver comprising a syndiotactic propylene-based ethylene-propylene copolymer comprising: a) 2 to 20% by weight of ethylene, b) 80 to 98% by weight of propylene; c) 50 to 99% of rr triads; and d) Mw (LS) of 10 to 250 kg/mol.
    Type: Grant
    Filed: November 4, 2022
    Date of Patent: March 12, 2024
    Assignees: EXXONMOBIL CHEMICAL PATENTS INC., CHEVRON ORONITE COMPANY LLC
    Inventors: Sara Yue Zhang, Maryam Sepehr, David L. Morgan, Jingwen Zhang, Jo Ann M. Canich, Peijun Jiang, John R. Hagadorn, Chase A. Eckert, Sarah J. Mattler, Shuhui Kang, Pritesh Arjunbhai Patel
  • Patent number: 11919981
    Abstract: This invention relates to mono cyclopentadienyl pyridyl hydroxyl amine catalyst compounds represented by Formula I(a) or I(b): wherein: M is a group 3-12 metal; R1 is a hydrocarbyl group or a silyl group; R2, R3, R4, R5, R6, R7, R8, R9, and R10 are independently selected from the group consisting of hydrogen, hydrocarbyl, alkoxy, silyl, amino, aryloxy, halogen and phosphino, wherein any two adjacent R groups may be joined to form a saturated or unsaturated single or multicyclic hydrocarbyl ring or heterocyclic ring; and each X1 and X2 is independently an anionic leaving group or X1 and X2 may be joined together to form a dianionic group.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: March 5, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alex E. Carpenter, Danielle G. Singleton
  • Patent number: 11912819
    Abstract: Semicrystalline polyethylene-2,2?-bifuran-5,5?-dicarboxylate (PEBF) homopolyester or copolyester with up to 5 mole percent isophthalate or up to 2.7 mole percent terephthalate, based on the diacid component, or up to 2.5 mole percent 1,4-cyclohexanedimethanol (CHDM), based on the diol component, prepared by esterifying or transesterifying the diacid and the diol components with a catalyst including about 10 to about 50 ppm wt metal, and polycondensation, wherein the bifuran polyester has an intrinsic viscosity of at least 0.4 g/dL and a semicrystalline melting peak (Tm) with ?Hf equal to or greater than 5 J/g on the second heating ramp.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: February 27, 2024
    Assignees: ExxonMobil Chemical Patents, Inc., Virginia Tech Intellectual Properties, Inc.
    Inventors: Monica Lotz, Kapil Kandel, Michael Salciccioli, Stephen Cohn, Alan A. Galuska, Javier Guzman, S. Richard Turner, Hans Eliot Edling, Edward E. Paschke
  • Patent number: 11905227
    Abstract: A process for olefin oligomerization can include contacting a feedstock comprising Cn and C2n olefins/paraffins under oligomerization conditions in the presence of an oligomerization catalyst, wherein n is 2 to 15; and recovering an oligomeric product comprising C3n oligomers having a branching index of less than 2.1. Optionally, the feedstock can further comprise C3n olefins/paraffins.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: February 20, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shiwen Li, Alan A. Galuska, Teng Xu
  • Patent number: 11891517
    Abstract: Wax compositions may be obtained by providing an olefinic feed comprising a first linear alpha olefin having m carbon atoms and a second linear alpha olefin having n carbon atoms, wherein m and n are independently selected integers each ranging from about 12 to about 100, and the olefinic feed optionally comprises one or more internal olefins and/or one or more branched olefins; contacting the olefinic feed with a metal carbene catalyst in a reactor; forming ethylene and a hydrocarbon substance comprising a linear olefin dimer comprising two carbon atoms less than a sum of m and n; removing the ethylene from the reactor while forming the linear olefin dimer; and isolating a wax composition comprising the linear olefin dimer, a hydrogenated reaction product thereof, or any combination thereof.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: February 6, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Anatoly I. Kramer, Alexander V. Zabula, Elizabeth A. Turner, Raf de Meester, Helge Jaensch, Jeffrey C. Bunquin, Javier Guzman, Emiel de Smit, John S. Coleman, Madelyn Bekker, Roxana Perez Velez
  • Patent number: 11873263
    Abstract: The present invention concerns a process for oligomerizing an olefin feedstock to form an oligomerization product, and a method of controlling such an oligomerization process. The process comprises oligomerizing propylene to form a Cn olefin, including contacting a feed stream comprising propylene and a recycle fraction with a solid phosphoric acid oligomerization catalyst under effective oligomerization conditions in an oligomerization reactor to produce an oligomerization effluent; and fractionating the oligomerization effluent to obtain a product fraction and the recycle fraction, the product fraction comprising the Cn olefin and the recycle fraction comprising a Cn-3 olefin; wherein the recycle fraction comprises at least 80 wt % of the Cn-3 olefin, based on the weight of the recycle fraction; and wherein n is 9, or 12.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: January 16, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Andrew Wiersum, Paul Hamilton, Luc Martens, Sara Garcia Frutos, Marcel Janssen
  • Patent number: 11859136
    Abstract: Processes for upgrading a hydrocarbon. The process can include (I) contacting a hydrocarbon-containing feed with a catalyst that can include a Group 8-10 element or a compound thereof disposed on a support to effect conversion of the hydrocarbon-containing feed to produce a coked catalyst and an effluent. The process can also include (II) contacting the coked catalyst with an oxidant to effect combustion the coke to produce a regenerated catalyst. The process can also include (IIa) contacting the regenerated catalyst with a reducing gas to produce a regenerated and reduced catalyst. The process can also include (III) contacting an additional quantity of the hydrocarbon-containing feed with the regenerated and reduced catalyst. A cycle time from the contacting the hydrocarbon-containing feed with the catalyst in step (I) to the contacting the additional hydrocarbon-containing feed with the regenerated and reduced catalyst in step (III) can be ?1 hours.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: January 2, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Xiaoying Bao
  • Patent number: 11859032
    Abstract: A process to produce a branched ethylene-?-olefin diene elastomer comprising combining a catalyst precursor and an activator with a feed comprising ethylene, C3 to C12 ?-olefins, and a dual-polymerizable diene to obtain a branched ethylene-?-olefin diene elastomer; where the catalyst precursor is selected from pyridyldiamide and quinolinyldiamido transition metal complexes. The branched ethylene-?-olefin diene elastomer may comprise within a range from 40 to 80 wt % of ethylene-derived units by weight of the branched ethylene-?-olefin diene elastomer, and 0.1 to 2 wt % of singly-polymerizable diene derived units, 0.1 to 2 wt % of singly-polymerizable diene derived units, and the remainder comprising C3 to C12 ?-olefin derived units, wherein the branched ethylene-?-olefin diene elastomer has a weight average molecular weight (Mw) within a range from 100 kg/mole to 300 kg/mole, an average branching index (g?avg) of 0.9 or more, and a branching index at very high Mw (g?1000) of less than 0.9.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: January 2, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Rhutesh K. Shah, Ron Walker, John R. Hagadorn, Sudhin Datta
  • Patent number: 11857954
    Abstract: Disclosed are novel supported nanoparticle compositions, precursors, processes for making supported nanoparticle compositions, processes for making catalyst compositions, and processes for converting syngas. The catalyst composition can comprise nanoparticles comprising metal oxide(s), such as manganese cobalt oxide. This disclosure is particularly useful for converting syngas via the Fischer-Tropsch reactions to make olefins and/or alcohols.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: January 2, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey C. Bunquin, Joshua J. Willis, Paul F. Keusenkothen, Javier Guzman, Jennifer R. Pena
  • Publication number: 20230416418
    Abstract: The present disclosure provides aromatic-solvent-free supported catalyst compounds and catalyst systems comprising asymmetric bridged metallocenes containing a ligand having at least one saturated ring, catalyst systems including such compounds, and uses thereof. These supported catalyst compounds and catalyst systems can be used to prepare polymer comprising no aromatic solvent.
    Type: Application
    Filed: November 17, 2021
    Publication date: December 28, 2023
    Applicant: EXXONMOBIL CHEMICAL PATENTS INC.
    Inventors: Nikola S. LAMBIC, Francis C. RIX, Lubin LUO, Charles J. HARLAN, An Ngoc-Michael NGUYEN
  • Patent number: 11846371
    Abstract: A flexible conduit used for transportation of hydrocarbon fluids for off-shore and on-shore oil and gas applications includes an inner pressure sheath, at least one reinforcing layer at least partially disposed around the pressure sheath, an outer protective sheath at least partially disposed around the at least one reinforcing layer, and optionally a thermally insulating layer disposed between the at least one reinforcing layer and the outer protective sheath. At least one of the inner pressure sheath, outer protective sheath, and the thermally insulating layer is manufactured using a thermoplastic blend (TPB) composition. The TPB compositions disclosed herein are useful for the formation of at least one polymer layer of the thermoplastic umbilical hoses used for transportation of hydrocarbon fluids.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: December 19, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Antonios K. Doufas, Krishnan Anantha Narayana Iyer, Michael J. Goncy, Andrew A. Takacs, Wanli Wang
  • Patent number: 11845707
    Abstract: Processes and systems for C3+ monoolefin conversion. In some examples, the process can include reacting a first mixture that includes C3+ monoolefins and a first oxygenate to produce a first effluent that includes a first ether and <1 wt. % of any first di-C3+ olefin. A first product that includes the first ether and a first byproduct that includes at least a portion of any first di-C3+ olefin and unreacted C3+ monoolefins can be separated from the first effluent. A second olefin mixture, at least a portion of the first byproduct, and a second oxygenate can be combined to produce a second mixture. The second mixture can be reacted to produce a second effluent that includes a second ether and a second di-C3+ olefin. The reaction of the second mixture can produce a greater amount, on a mole basis, of the second di-C3+ olefin than the second ether.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: December 19, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rodney S. Smith, Roshni Jindal, Julie D. Hietpas
  • Patent number: 11834538
    Abstract: Polyolefin elastomers are widely employed commodity polymers. There remains a desire to expand the structural diversity of polyolefin elastomers to facilitate their use in additional applications. Polyolefin elastomers may be graft copolymers that comprise: a first polymer chain comprising at least a first olefinic monomer comprising isobutylene and a second olefinic monomer bearing a benzylic carbon atom or an allylic carbon atom, and a second polymer chain bonded to the benzylic carbon atom or the allylic carbon atom of the first polymer chain. The second polymer chain comprises at least one monomer that is not present in the first polymer chain. The second polymer chain may be bonded to the first polymer chain by generating a carbanion upon the benzylic carbon atom or the allylic carbon atom and growing the second polymer chain by anionic polymerization.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: December 5, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Jason A. Mann