Patents Assigned to ExxonMobil Chemical Patents Inc.
  • Patent number: 12116430
    Abstract: A method for regulating use of stored diluent in a polymerization process so as to maximize use of diluent recycled diluent recovered from the process, and so minimize use of stored diluent, is disclosed. Also disclosed is apparatus, particularly as an arrangement of controllers and valves for handling the flow of diluent through the process that can be used to implement the disclosed process.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: October 15, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith W. Trapp, John L. Begue, Kelly M. Forcht, Douglas J. Picou
  • Patent number: 12098337
    Abstract: Conduits for cooling a hydrocarbon stream and processes for using same. The conduit can include a first inner wall defining a first bore, a second inner wall defining a second bore, and an outer wall disposed about the first and second inner walls. The conduit can also include an annular support wall connected to an inner surface of the outer wall. An end of the second inner wall and an end of the annular support wall can define a perimeter opening that can be in fluid communication with the second bore. An annular flexible ring can be bonded to the annular support wall and can flexibly contact the first inner wall. A substantially annular cavity can be disposed between the second inner and the outer walls and in fluid communication with the perimeter opening. A quench fluid introduction port can be configured to introduce a quench fluid into the cavity.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: September 24, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Spicer, James C. Slonaker, Thomas T. Hirst
  • Patent number: 12097464
    Abstract: An exhaust steam stream having an absolute pressure from 200 kPa to 1,050 kPa and shaft power are produced from an extraction turbine and/or a back-pressure turbine. The exhaust steam stream can be supplied to an amine regenerator of an amine CO2 separation process. The shaft power can be utilized to drive equipment in a hydrocarbon processing plant such as an olefins production plant.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: September 24, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Spicer, James L. Kendall, Steven M. Slack
  • Patent number: 12091533
    Abstract: The present disclosure provides polypropylene compositions that have a high gloss and minimum or no haze while also having a high melt strength (e.g., high temperature resistance) and a relative high stiffness. Polypropylene compositions contain one or more base polypropylenes (e.g., trimmed polypropylenes (tPPs)) and one or more clarifying agents. The base or trimmed polypropylene contains at least 50 mol % of propylene and has a molecular weight distribution (Mw/Mn) in a range from 7 to 22, a z-average molecular weight of less than 2,500,000 g/mol, a branching index (g?vis) of at least 0.95, and a melt strength of less than 20 cN determined using an extensional rheometer at 190° C. The base or trimmed polypropylene can be produced from one or more high melt strength polypropylenes (HMS PPs).
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: September 17, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sasha P. Schmitt, Caitlin A. Spofford, George J. Pehlert
  • Patent number: 12091476
    Abstract: In an embodiment, a method for producing a polyolefin includes contacting a first composition and a second composition in in a line to form a third composition, wherein: the first composition comprises a contact product of a first catalyst, a second catalyst, a support, a first activator, and a diluent, wherein the mol ratio of second catalyst to first catalyst is from 60:40 to 40:60, the second composition comprises a contact product of the third catalyst, a second activator, and a second diluent, and the third composition comprises a mol ratio of the third catalyst to the second catalyst to the first catalyst of from 10:35:55 to 60:15:25, such as 30:20:30; introducing the third composition from the line into a gas-phase fluidized bed reactor; exposing the third composition to polymerization conditions; and obtaining a polyolefin.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: September 17, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kevin A. Stevens, David F Sanders, Matthew W. Holtcamp, Charles J. Harlan, Xuan Ye, Adriana S. Silva, Matthew S. Bedoya, Joshua P. Olson
  • Patent number: 12091380
    Abstract: The present disclosure provides processes and apparatus for producing poly alpha olefins. In at least one embodiment, a process to produce a poly alpha olefin includes introducing a first olefin monomer to a first catalyst and an activator in a first reactor to form a first reactor effluent comprising olefin dimers and olefin timers. The process includes heating the first reactor effluent to form an isomerized product and introducing the isomerized product to a filtration unit to form a filtration effluent. The process may include introducing the filtration effluent to a first distillation unit to form a first distillation effluent. The process may include introducing the first distillation effluent to a second distillation unit to form a second distillation effluent. The process includes introducing the first distillation effluent and/or the second distillation effluent to a second catalyst in a second reactor to form a second reactor effluent comprising the olefin timers.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: September 17, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Monica D. Lotz, Jennifer L. Rapp, Patrick C. Chen, Md Safatul Islam
  • Patent number: 12090474
    Abstract: A fluidized reactor system includes a reactor containing a fluidized bed situated above a distributor plate arranged within the reactor, a fluidizing gas fed into the fluidized bed via the distributor plate to cause uniform fluidization of the fluidized bed and promote creation of solid polymeric granules, and a valve assembly penetrating a sidewall of the reactor to remove a mixture of the fluidizing gas and the solid polymeric granules from the fluidized bed. The valve assembly is coupled to the sidewall at a downward angle relative to the sidewall such that an upward-facing opening of the valve assembly extends into the fluidized bed.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: September 17, 2024
    Assignee: EXXONMOBIL CHEMICAL PATENTS INC.
    Inventors: Kevin W. Lawson, Brett A. Smith, Jason M. Reverendo
  • Patent number: 12084624
    Abstract: The present disclosure generally relates to alkylated aromatic compounds useful as basestocks and additives for high viscosity applications. In an embodiment is provided an alkylated aromatic compound. In another embodiment is provided a lubricant formulation that includes an alkylated aromatic compound. In another embodiment is provided a lubricant formulation that includes an alkylated aromatic compound, an additive, and optionally, a Group III basestock, Group IV basestock, Group V basestock, or a combination thereof, the Group V basestock being different than the alkylated aromatic compound. In another embodiment is provided a method of forming a lubricant formulation that includes introducing a mPAO, an aromatic compound, and an acid catalyst to a reactor under reactor conditions to form an alkylated aromatic compound; and introducing the alkylated aromatic compound to an additive to form a lubricant formulation.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: September 10, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Monica D. Lotz, Kyle G. Lewis, Christine M Henry, Craig J. Emett
  • Patent number: 12084529
    Abstract: Provided is a hydrogenation catalyst solution comprising a solid catalyst precursor and an activator mixed in a solvent solution where propylene or another alpha-olefin or combination thereof is then added to this solution to prevent the formation of solids and stabilize the solution. The hydrogenation catalyst solution can then be combined with a polymerization catalyst such as Ziegler-Natta catalyst in a polymerization reactor so as to remove excess hydrogen from the reactor during a polymerization process. Hydrogen is eliminated by converting a portion of the olefins (propylene and ethylene) present into alkanes (propane and ethane).
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: September 10, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Christopher G. Bauch
  • Patent number: 12077482
    Abstract: Compositions comprising one or more amphiphilic compounds formed from vinylidene olefins may comprise: a reaction product of one or more vinylidene olefins, in which the reaction product comprises a hydrophobic portion and a hydrophilic portion comprising a polar head group bonded to the hydrophobic portion. The one or more vinylidene olefins each comprise a vinylidene group that undergoes a reaction to become saturated and to produce at least part of the hydrophobic portion.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: September 3, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mika L. Shiramizu, Alan A. Galuska, Alex E. Carpenter, Jennifer L. Rapp
  • Patent number: 12071534
    Abstract: The present disclosure provides polyolefin compositions and films and method for producing such films. The polyolefin composition contains about 40 wt % to about 95 wt % of a BOCD polyethylene and about 10 wt % to about 60 wt % of a polypropylene, by weight of the polyolefin composition. The polyolefin composition has a 1% secant flexural modulus MD of greater than 250 MPa and a 1% secant flexural modulus TD of greater than 300 MPa, as determined for a layer of the polyolefin composition having a thickness of about 50 ?m and a Dart Impact (Method A) of greater than 15 g/?m and an Elmendorf tear MD of greater than 7 g/?m, as determined for a film containing the polyolefin composition and having a thickness of about 90 ?m.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: August 27, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sushanta Dhar Roy, Bradley A. Kramer, Ying Zou, Jasper Holsbeek, Stefan B. Ohlsson, Maciej M. Pasniewski, Mosha H. Zhao
  • Patent number: 12065518
    Abstract: Controlling the shutdown of a polyethylene reactor system that includes a secondary compressor, a reactor, a high pressure let down valve (HPLDV), a high-pressure separator, and a high-pressure recycle gas system is provided. After a partial or complete shutdown of secondary compressor, HPLDV opens to a pre-set open position until the reactor pressure reduces to either a pre-set reduced pressure limit or a until the slope of the reactor gas density to reactor pressure exceeds 0.15. The HPLDV controls the pressure to a pressure set point.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: August 20, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul J. Clymans, Jefferson P. Galliano, Philippe A. P. D'Hooghe, Cindy Dewitte, Henri A. Lammens
  • Patent number: 12065616
    Abstract: Systems and methods are provided for integration of a reactor for polyolefin pyrolysis with the effluent processing train for a steam cracker. The polyolefins can correspond to, for example, polyolefins in plastic waste. Integrating a process for polyolefin pyrolysis with a steam cracker processing train can allow a mixture of polymers to be converted to monomer units while reducing or minimizing costs and/or equipment footprint. This can allow for direct conversion of polyolefins to the light olefin monomers in high yield while significantly lowering capital and energy usage due to integration with a steam cracking process train. The integration can be enabled in part by selecting feeds with appropriate mixtures of various polymer types and/or by limiting the volume of the plastic waste pyrolysis product relative to the volume from the steam cracker(s) in the steam cracking process train.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: August 20, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sundararajan Uppili, Bryan A. Patel, Randolph J. Smiley, Lawrence R. Gros, Anthony Go, Saurabh S. Maduskar, Melissa D. Foster, Philippe Laurent
  • Patent number: 12060314
    Abstract: Vinylidene olefins may undergo hydroformylation in the presence of an unmodified cobalt catalyst to form compositions comprising a mixture of alcohol molecules having a specified amount of branching. In particular, the compositions may feature a mixture comprising reduced hydroformylated reaction products of a vinylidene olefin comprising alcohol molecules represented by at least one of Structures 3-5. The mixture has an average of about 1.2 to about 2.1 branches per alcohol molecule. Ra and Rb may be the same or different and comprise a branched or unbranched alkyl group having about 6 to about 14 carbon atoms, excluding branches. Variable m is an integer ranging from 0 to a number of carbon atoms in Rb. Rb is a branched or unbranched alkyl group having m+1 carbon atoms less than Rb.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: August 13, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alex E Carpenter, Sarah J Mattler, Danielle G. Singleton, Jennifer L. Rapp
  • Patent number: 12054456
    Abstract: Processes for upgrading a hydrocarbon. The process can include introducing, contacting, and halting introduction of a hydrocarbon-containing feed into a reaction zone. The feed can be contacted with a catalyst within the reaction zone to effect dehydrogenation, dehydroaromatization, and/or dehydrocyclization of the feed to produce a coked catalyst and an effluent. The process can include introducing, contacting, and halting introduction of an oxidant into the reaction zone. The oxidant can be contacted with the coked catalyst to effect combustion of the coke to produce a regenerated catalyst. The process can include introducing, contacting, and halting introduction of a reducing gas into the reaction zone. The reduction gas can be contacted with the regenerated catalyst to produce a regenerated and reduced catalyst. The process can include introducing and contacting an additional quantity of the feed with the regenerated and reduced catalyst to produce a re-coked catalyst and additional first effluent.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: August 6, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xiaoying Bao, John S. Coleman
  • Patent number: 12043679
    Abstract: In an embodiment, a method for producing a polyolefin is provided. The method includes: contacting a first composition and a second composition in a line to form a third composition, wherein: the first composition comprises a contact product of a first catalyst, a second catalyst, a support, and a diluent, wherein the mol ratio of second catalyst to first catalyst is from 60:40 to 40:60, the second composition comprises a contact product of the second catalyst and a second diluent; introducing the third composition from the line into a gas-phase fluidized bed reactor; exposing the third composition to polymerization conditions; and obtaining a polyolefin.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: July 23, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kevin A. Stevens, David F Sanders, Matthew W. Holtcamp, Charles J. Harlan, Xuan Ye, Adriana S Silva, Matthew S. Bedoya, Joshua P. Olson
  • Patent number: 12036716
    Abstract: The present disclosure provides oriented multilayer films including a first layer, a second layer disposed on the first layer and a third layer disposed on the second layer, where the first layer and the third layer include a polyethylene independently selected from (i) a polyethylene having a density of about 0.94 g/cc or greater; (ii) a polyethylene copolymer including ethylene and a C4-C12 alpha-olefin and having a density 7 from about 0.927 g/cc to about 0.95 g/cc; or (iii) a mixture thereof, and at least one of the first layer or the third layer includes the polyethylene copolymer, the second layer includes a polyethylene composition having a density of about 0.91 g/cc or greater and the oriented multilayer film has a haze of about 10% or less and a 1% secant modulus in the direction of stretching of about 500 MPa or greater.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: July 16, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: XiRui Wang, Etienne R. H. Lernoux, Arash Sarhangi Fard, Chiao Kiat Pey
  • Patent number: 12024684
    Abstract: Furnace systems and methods for steam cracking hydrocarbons to produce ethylene and other light olefins are provided herein. A furnace system for cracking hydrocarbons includes a radiant firebox containing a plurality of burners and an injection nozzle, a primary transfer line exchanger fluidly coupled to and downstream of the radiant firebox, and a flow restrictor fluidly coupled to and downstream of the primary transfer line exchanger. The furnace system also includes a decoke vessel containing an effluent inlet, a fluid outlet, and a coke outlet, where the effluent inlet is fluidly coupled to and downstream of the flow restrictor and the fluid outlet is fluidly coupled to and upstream of the injection nozzle of the radiant firebox, and a coke collection bin is coupled to the coke outlet of the decoke vessel.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: July 2, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: William A. Aslaner, Thomas T. Hirst, David Spicer, George Stephens
  • Patent number: 12024685
    Abstract: Systems and methods are provided for performing ethane steam cracking at elevated coil inlet pressures and/or elevated coil outlet pressures in small diameter furnace coils. Instead of performing steam cracking of ethane at a coil outlet pressure of ˜22 psig or less (˜150 kPa-g or less), the steam cracking of ethane can be performed in small diameter furnace coils at a coil outlet pressure of 30 psig to 75 psig (˜200 kPa-g to ˜520 kPa-g), or 40 psig to 75 psig (˜270 kPa-g to ˜520 kPa-g). In order to achieve such higher coil outlet pressures, a correspondingly higher coil inlet pressure can also be used, such as a pressure of 45 psig (˜310 kPa-g) or more, or 50 psig (˜340 kPa-g) or more.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 2, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: George Stephens, David Spicer, Gregory E. Yeo, Stephen R. Phillips
  • Patent number: 12018142
    Abstract: Provided herein are polymer compositions comprising a polymer and polyethylene glycol (PEG)-based polymer processing aid (PPA). The polyethylene glycol can have molecular weight less than 40,000 g/mol. The polymer can be a C2-C6 olefin homopolymer or a copolymer of two or more C2-C20 ?-olefins, and the polymer composition can take the form of polymer pellets; a polymer melt; reactor-grade polymer granules and/or polymer slurries; or other form of polymer composition containing the PPA and optionally one or more other additives. The polymer composition is preferably free or substantially free of fluorine, including fluoropolymer-based PPAs.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: June 25, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael A. Leaf, Danny Van Hoyweghen, Nino Ruocco