Patents Assigned to ExxonMobile Upstream Research Company
  • Patent number: 11506454
    Abstract: A method for liquefying a feed gas stream. A compressed first refrigerant stream is cooled and expanded to produce an expanded first refrigerant stream. The feed gas stream is cooled to within a first temperature range by exchanging heat only with the expanded first refrigerant stream to form a liquefied feed gas stream and a warmed first refrigerant stream. A compressed second refrigerant stream is provided is cooled to produce a cooled second refrigerant stream. At least a portion of the cooled second refrigerant stream is further cooled by exchanging heat with the expanded first refrigerant stream, and then is expanded to form an expanded second refrigerant stream. The liquefied feed gas stream is cooled to within a second temperature range by exchanging heat with the expanded second refrigerant stream to form a sub-cooled LNG stream and a first warmed, second refrigerant stream.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: November 22, 2022
    Assignee: ExxonMobile Upstream Research Company
    Inventor: Fritz Pierre, Jr.
  • Patent number: 10989212
    Abstract: The disclosure includes controlling a pressure ratio for a compressing system, comprising introducing a quantity of liquid into an input stream to create a multiphase input stream, compressing the multiphase input stream with a centrifugal compressor to create a discharge stream, measuring a parameter of the discharge stream, wherein the discharge parameter corresponds to a pressure ratio for the centrifugal compressor, when the parameter exceeds a first predetermined point, increasing a pressure ratio of the centrifugal compressor by increasing the quantity of liquid introduced, and when the parameter exceeds a second predetermined point, decreasing the pressure ratio by decreasing the quantity of liquid introduced.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: April 27, 2021
    Assignee: ExxonMobile Upstream Research Company
    Inventors: Michael T. Matheidas, Stanley O. Uptigrove
  • Patent number: 9631542
    Abstract: A system includes a gas turbine engine that includes a combustor section having one or more combustors configured to generate combustion products and a turbine section having one or more turbine stages between an upstream end and a downstream end. The one or more turbine stages are driven by the combustion products. The gas turbine engine also includes an exhaust section disposed downstream from the downstream end of the turbine section. The exhaust section has an exhaust passage configured to receive the combustion products as an exhaust gas. The gas turbine engine also includes a mixing device disposed in the exhaust section. The mixing device is configured to divide the exhaust gas into a first exhaust gas and a second exhaust gas, and to combine the first and second exhaust gases in a mixing region to produce a mixed exhaust gas.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: April 25, 2017
    Assignees: General Electric Company, ExxonMobile Upstream Research Company
    Inventors: Moorthi Subramaniyan, Christian Michael Hansen, Richard A. Huntington, Todd Franklin Denman
  • Patent number: 9584957
    Abstract: A system for wirelessly monitoring a property in a process, comprising a sensor data device for providing sensor data relating to the process a memory device comprising information, wherein the information comprises transmission information, a transportable wireless transmission device configured to receive the sensor data and the information, interpret the transmission information, and transmit the sensor data, the information, or both to a receiving station using the transmission information, and a temporary mounting position in proximity to the memory device for temporarily positioning the transportable wireless transmission device.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: February 28, 2017
    Assignee: ExxonMobile Upstream Research Company
    Inventors: Richard A. Huntington, Bin Xu, Wayne S. Pon, Vasudev Rayachoti
  • Patent number: 9523782
    Abstract: The present disclosure provides a system and method for automatically identifying and classifying seismic terminations within a seismic data volume. A set of surfaces is obtained (step 303) describing the seismic data volume. A plurality of seismic terminations is identified within the set of surfaces (step 307). Based upon seismic attributes or geometric criterion, a termination direction can be determined (step 309) for at least one termination.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: December 20, 2016
    Assignee: ExxonMobile Upstream Research Company
    Inventor: Matthias G. Imhof
  • Patent number: 8983141
    Abstract: An automated method for texture segmentation (11) of geophysical data volumes, where texture is defined by double-window statistics of data values, the statistics being generated by a smaller pattern window moving around within a larger sampling window (12). A measure of “distance” between two locations is selected based on similarity between the double-window statistics from sampling windows centered at the two locations (13). Clustering of locations is then based on distance proximity (14).
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: March 17, 2015
    Assignee: ExxonMobile Upstream Research Company
    Inventor: Krishnan Kumaran
  • Patent number: 8756042
    Abstract: Method and system for more efficient checkpointing strategy in cross correlating (316) a forward (328) and backward (308) propagated wave such as in migrating (326) or inverting seismic data. The checkpointing strategy includes storing in memory forward simulation data at a checkpointed time step, wherein the stored data are sufficient to do a cross correlation at that time step but not to restart the forward simulation. At other checkpoints, a greater amount of data sufficient to restart the simulation may be stored in memory (314). Methods are disclosed for finding an optimal combination, i.e. one that minimizes computation time (1132), of the two types of checkpoints for a given amount of computer memory (1004), and for locating a checkpoint at an optimal time step (306, 1214, 1310). The optimal checkpointing strategy (1002) also may optimize (1408) on use of fast (1402) vs. slow (1404) storage.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 17, 2014
    Assignee: ExxonMobile Upstream Research Company
    Inventors: Lijian Tan, John E. Anderson
  • Patent number: 8731887
    Abstract: There is provided a system and method for obtaining a model of data describing a physical structure. An exemplary method comprises defining a three-dimensional (3D) object that corresponds to a physical structure. The 3D object comprises a set of topological elements that each has an initial geometric definition. The exemplary method also comprises creating a subsequent model of the data by updating a subset of the topological elements in the 3D object. Each updated element in the subset has a geometric definition that has changed relative to its initial geometric definition.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: May 20, 2014
    Assignee: ExxonMobile Upstream Research Company
    Inventors: Lucas J. Hilliard, William P. Brown, Indra N. Datta
  • Patent number: 8684079
    Abstract: Described is a way to reduce solvent usage in solvent-dominated oil recovery processes through the use of an emulsion. Injection of an emulsion into an oil reservoir is performed as an alternative or supplement to solvent injection to minimize solvent usage per unit amount of oil recovered. The emulsion may contain solvent and the solvent may form an external-phase of the emulsion. A solvent-external emulsion may be injected and formed using an aqueous liquid or a gas as the internal phase. The emulsion may be an aqueous-external, vapor-internal emulsion with solvent being injected separately or simultaneously. Polymer may be added to viscosify the emulsions and use them for flow diversion in a solvent-dominated process.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: April 1, 2014
    Assignee: ExxonMobile Upstream Research Company
    Inventors: Robert Chick Wattenbarger, Robert D. Kaminsky, Bhargaw L. Adibhatla
  • Publication number: 20140027122
    Abstract: Method for marine seismic acquisition using both monopole (91) and dipole (92) source types. Through a combination of source design and operation and/or combination or summing of the data in a processing step, the source ghost is either attenuated or, if desired, enhanced (93). The properties of the two different source types allow them to be adjusted so that the first down going wave from each has either opposite polarity or the same polarity, whereas the source-ghost wave will have, respectively same polarity or opposite polarity. This allows cancellation or enhancement of the source ghost. If the survey also employs two-component sensor acquisition, then the combined data sets may be both sensor de-ghosted and source de-ghosted.
    Type: Application
    Filed: March 9, 2012
    Publication date: January 30, 2014
    Applicant: Exxonmobile Upstream Research Company
    Inventors: Mark A. Meier, Richard E. Duren
  • Patent number: 8527204
    Abstract: Systems and methods which provide accurate formation information regardless of formation and borehole geometry, including those associated with high angle and horizontal wells, are shown. In providing processing of logging or image data, such as may be provided by a density tool or other tool, according to embodiments, formation attributes or features (e.g., density and dip angle) are estimated using raw data provided by a the tool. The foregoing estimations may thereafter be iteratively refined using effective volume of interest (EVOI) information. According to embodiments, depth boundaries of formation information provided by the tool are shifted as a function of azimuth for correct spatial positioning of formation features using EVOI information. Processing of formation attribute or feature data provided by embodiments may be used with respect to various tool configurations, including configurations with and without borehole standoff.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: September 3, 2013
    Assignee: ExxonMobile Upstream Research Company
    Inventors: Hezhu Yin, Pingjun Guo, Alberto X. Mendoza
  • Publication number: 20130096898
    Abstract: There is provided a method for modeling a hydrocarbon reservoir that includes generating a reservoir model that has a plurality of sub regions. A solution surrogate is obtained for a sub region by searching a database of existing solution surrogates to obtain an approximate solution surrogate based on a comparison of physical, geometrical, or numerical parameters of the sub region with physical, geometrical, or numerical parameters associated with the existing surrogate solutions in the database. If an approximate solution surrogate does not exist in the database, the sub region is simulated using a training simulation to obtain a set of training parameters comprising state variables and boundary conditions of the sub region. A machine learning algorithm is used to obtain a new solution surrogate based on the set of training parameters. The hydrocarbon reservoir can be simulated using the solution surrogate obtained for the at least one sub region.
    Type: Application
    Filed: May 19, 2011
    Publication date: April 18, 2013
    Applicant: Exxonmobile Upstream Research Company
    Inventors: Adam Usadi, Dachang Li, Rossen Parashkevov, Sergey A. Terekhov, Xiaohui Wu, Yahan Yang
  • Publication number: 20130096899
    Abstract: There is provided a method for modeling a hydrocarbon reservoir that includes generating a reservoir model comprising a plurality of coarse grid cells. The method includes generating a fine grid model corresponding to one of the coarse grid cells and simulating the fine grid model using a training simulation to generate a set of training parameters comprising boundary conditions of the coarse grid cell. A machine learning algorithm may be used to generate, based on the set of training parameters, a coarse scale approximation of a phase permeability of the coarse grid cell. The hydrocarbon reservoir can be simulated using the coarse scale approximation of the effective phase permeability generated for the coarse grid cell. The method also includes generating a data representation of a physical hydrocarbon reservoir in a non-transitory, computer-readable, medium based at least in part on the results of the simulation.
    Type: Application
    Filed: May 19, 2011
    Publication date: April 18, 2013
    Applicant: Exxonmobile Upstream Research Company
    Inventors: Adam Usadi, Dachang Li, Rossen Parashkevov, Sergey A. Terekhov, Xiaohui Wu, Yahan Yang
  • Publication number: 20120305264
    Abstract: The present disclosure relates to solvent surveillance in heavy oil production. A method includes the steps of measuring an amount of a native bitumen marker (NBM) in a heavy oil, measuring an amount of the NBM in a recovery-aid solvent, measuring an amount of the NBM in a blend including the heavy oil and the recovery-aid solvent, and applying a blending model to determine a fraction of the recovery-aid solvent in the blend.
    Type: Application
    Filed: November 10, 2010
    Publication date: December 6, 2012
    Applicant: Exxonmobile Upstream Research Company
    Inventors: Tapantosh Chakrabarty, Scott E. Hommema, Joseph L. Feimer
  • Publication number: 20120247105
    Abstract: Integrated systems and methods for low emission power generation in a hydrocarbon recovery processes are provided. One system includes a control fuel stream, an oxygen stream, a combustion unit, a first power generate on system and a second power generation system. The combustion unit is configured to receive and combust the control fuel stream and the oxygen stream to produce a gaseous combustion stream having carbon dioxide and water. The first power generation system is configured to generate at least one unit of power and a carbon dioxide stream. The second power generation system is configured to receive thermal energy from the gaseous combustion stream and convert the thermal energy into at least one unit of power.
    Type: Application
    Filed: September 17, 2010
    Publication date: October 4, 2012
    Applicant: Exxonmobile Upstream Research Company
    Inventors: Eric D. Nelson, Moses Minta, Loren K. Starcher, Franklin Mittricker, Omar Angus Sites, Jasper L. Dickson
  • Publication number: 20120158389
    Abstract: The present techniques disclose methods and systems for rapidly evaluating multiple models using multilevel surrogates (for example, in two or more levels). These surrogates form a hierarchy in which surrogate accuracy increases with its level. At the highest level, the surrogate becomes an accurate model, which may be referred to as a full-physics model (FPM). The higher level surrogates may be used to efficiently train the low level surrogates (more specifically, the lowest level surrogate in most applications), reducing the amount of computing resources used. The low level surrogates are then used to evaluate the entire parameter space for various purposes, such as history matching, evaluating the performance of a hydrocarbon reservoir, and the like.
    Type: Application
    Filed: July 28, 2010
    Publication date: June 21, 2012
    Applicant: Exxonmobile Upstream Research Company
    Inventors: Xiaohui Wu, Dachang Li, Rossen Parashkevov, Adam K. Usadi, Yahan Yang
  • Patent number: 8203907
    Abstract: Method for updating a velocity model (926) for migrating seismic data using migration velocity scans with the objective of building a model that reproduces the same travel times that produced selected optimal images from a scan. For each optimal pick location (914) in the corresponding test velocity model (916), a corresponding location is determined (922) in the velocity model to be updated, using a criterion that the travel time to the surface for a zero offset ray (918) should be the same. Imaging travel times are then computed from the determined location to various surface locations in the update model (924), and those times are compared to travel times in the test velocity model from the optimal pick location to the same array of surface locations. The updating process consists of adjusting the model to minimize the travel time differences (934).
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: June 19, 2012
    Assignee: ExxonMobile Upstream Research Company
    Inventors: Jerome R. Krebs, Lorie K. Bear
  • Publication number: 20120125043
    Abstract: A system for removing acid gases from a raw gas stream is provided. The system includes a cryogenic distillation tower. The cryogenic distillation tower has a controlled freezing zone that receives a cold liquid spray comprised primarily of methane. The tower receives and then separates the raw gas stream into an overhead methane gas stream and a substantially solid material comprised of carbon dioxide. The system includes a collector tray below the controlled freezing zone. The collector tray receives the substantially solid material as it is precipitated in the controlled freezing zone. The system also has a filter. The filter receives the substantially solid material and then separates it into a solid material comprised primarily of carbon dioxide, and a liquid material comprising methane. The solid material may be warmed as a liquid and sold, while the liquid material is returned to the cryogenic distillation tower.
    Type: Application
    Filed: July 22, 2010
    Publication date: May 24, 2012
    Applicant: EXXONMOBILE UPSTREAM RESEARCH COMPANY
    Inventors: John Tim Cullinane, Paul Scott Northrop
  • Publication number: 20110290478
    Abstract: A method of enhancing a geologic model of a subsurface region is provided. A bed topography of the subsurface region is obtained. The bed topography is defined by a plurality of cells with an elevation associated with each cell center. The bed topography is represented as a cell-centered piecewise constant representation based on the elevations associated with the cells. The bed topography is reconstructed to produce a spatially continuous surface. Flux and gravitation al force-related source terms are calculated based on the reconstructed bed topography. Fluxes are calculated between at least two of the cells. Fluid flow, deposition of sediments onto the bed, and/or erosion of sediments from the bed are predicted using the fluxes and gravitational force-related source terms. The predictions are inputted into the geologic model to predict characteristics of the subsurface region, and the predicted characteristics are outputted.
    Type: Application
    Filed: January 21, 2010
    Publication date: December 1, 2011
    Applicant: ExxonMobile Upstream Research Company
    Inventors: Tao Sun, Dachang Li
  • Patent number: 7743831
    Abstract: A method and apparatus associated with producing hydrocarbons. In one embodiment, the apparatus comprises at least one heating element that is disposed in a chamber with actuator material. A member is also partially coupled to the chamber. The member is configured to extend to a first configuration when the at least one heating element converts at least a portion of the actuator material from a first phase to a second phase and contract to a second configuration when the actuator material converts from the second phase to the first phase.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: June 29, 2010
    Assignee: ExxonMobile Upstream Research Company
    Inventors: Franz D. Bunnell, Jeff H. Moss, Jon Blacklock