Patents Assigned to Exxon Research & Engineering Company
  • Patent number: 6110857
    Abstract: The present invention is directed toward improved processes for the regeneration of noble metal-containing catalysts wherein iron contamination of the catalyst during regeneration is significantly diminished. It has been found that maintenance of any iron present in contact with the catalyst in the oxidized state (e.g., as Fe.sub.2 O.sub.3 or Fe.sub.3 O.sub.4) during contact of the catalyst with a source of halogen in the regeneration haliding step results in a marked decrease in the degree of catalyst contamination by iron species.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: August 29, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Shun C. Fung, Walter S. Kmak
  • Patent number: 6105941
    Abstract: This invention is directed to a cyclonic vapor/liquid contacting device, wherein liquid exiting the cyclonic device is directed primarily to one side, and distillation or related mass transfer or heat transfer processes employing its use, such as fluid catalytic cracking. Liquid feed is introduced near the floor of the cyclone via downcomer or plenum. Vapor enters through sieve holes in the bottom of the cyclonic device. Near the floor are angled tabs or vanes that impart a spin to the vapor rising up through the floor. The tabs or vanes mix the liquid and vapor. The liquid is then thrown toward the cyclone wall, where it exits through slots in the wall. Preferably, a second set of tabs or vanes, located about in the middle of the cyclone, imparts additional spin to the vapor and entrained liquid rising through the cyclone. This improves liquid collection by the cyclone, especially in cases where a heavy liquid load dampens the spin action of the vapor in the base of the cyclone.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: August 22, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: John S. Buchanan, Berne K. Stober
  • Patent number: 6106697
    Abstract: C.sub.2 to C.sub.4 olefins are selectively produced from a gas oil or resid in a two stage process. The gas oil or resid is reacted in a first stage comprised of a fluid catalytic cracking unit wherein it is converted in the presence of conventional large pore zeolitic catalyst to reaction products, including a naphtha boiling range stream. The naphtha boiling range stream is introduced into a second stage comprised of a process unit containing a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone. The naphtha feedstream is contacted in the reaction zone with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures ranging from about 500 to 650.degree. C. and a hydrocarbon partial pressure from about 10 to 40 psia.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: August 22, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: George A. Swan, Michael W. Bedell, Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, Brian Erik Henry
  • Patent number: 6107353
    Abstract: Cyanide and ammonia are removed from a gas, such as a synthesis gas, by catalytically hydrolyzing cyanide in the gas to ammonia, water scrubbing the hydrolyzed gas to dissolve ammonia and at least a portion of remaining cyanide, and optionally, contacting the scrubbed gas with an adsorbent for cyanide and ammonia to form a clean gas containing less than 50 vppb of a combined total of cyanide and ammonia. The clean synthesis gas is then fed into a hydrocarbon synthesis reactor wherein it produces hydrocarbons with substantially reduced catalyst deactivation and cleaner hydrocarbon products.
    Type: Grant
    Filed: February 7, 1997
    Date of Patent: August 22, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Russell J. Koveal, Stephen C. Leviness
  • Patent number: 6103106
    Abstract: A process for the hydrodesulfurization (HDS) of the multiple condensed ring heterocyclic organosulfur compounds and the ring opening of ring compounds present in petroleum and petrochemical streams. The process is conducted in the presence of hydrogen, one or more noble metal catalysts, and a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: August 15, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Gary B. McVicker, James J. Schorfheide, William C. Baird Jr., Michele S. Touvelle, Michel Daage, Darryl P. Klein, Edward S. Ellis, David E.W. Vaughan, Jingguang Chen, Sylvain S. Hantzer
  • Patent number: 6103099
    Abstract: A lubricating base stock useful for forming lubricants such as a multigrade automotive oils, automatic transmission oils, greases and the like is prepared by hydroisomerizing a waxy hydrocarbon feed fraction having an initial boiling point in the 650-750.degree. F. range and an end point of at least 1050.degree. F., synthesized by a slurry Fischer-Tropsch hydrocarbon synthesis process. The hydroisomerization forms a hydroisomerate containing the desired base stock which is recovered, without dewaxing the hydroisomerate. The hydroisomerization is conducted at conditions effective to convert at least 67 wt. % of the 650-750.degree. F.+ waxy feed hydrocarbons to lower boiling hydrocarbons. When combined with a standard lubricant additive package, these base stocks have been formed into multigrade automotive crankcase oils, transmission oils and hydraulic oils meeting the specifications for these oils.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: August 15, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert J. Wittenbrink, Daniel F. Ryan, Douglas R. Boate
  • Patent number: 6103104
    Abstract: A process for hydroprocessing middle distillate petroleum streams in two temperature stages. The feedstream is hydroprocessed in two or more first temperature stages operated at a temperature from about 360.degree. C. to about 450.degree. C. The reaction product of the first temperature stage(s) is quenched to a temperature from about 260.degree. C. to about 350, stripped of H.sub.2 S, NH.sub.3 and other dissolved gases, then sent to the second temperature stage which is operated at said quenched temperature range. The product from the second temperature stage is also stripped of dissolved gases. Color bodies produced in the higher temperature first stage are hydrogenated in the last stage.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: August 15, 2000
    Assignee: Exxon Research and Engineering Company
    Inventor: Ramesh Gupta
  • Patent number: 6099621
    Abstract: The present invention is directed toward a composition comprising a polyamine or its polymer blend and at least one salt of an aminoacid, the salt of the aminoacid being present in an amount ranging from about 10 to 80 wt % based on the total weight of the composition. Another embodiment of the present invention comprises a membrane suitable for use in separating CO.sub.2 from gas streams containing CO.sub.2, especially H.sub.2 rich gas streams containing CO.sub.2 and CO. The membrane of this invention with polyamine shows higher CO.sub.2 selectivity and permeability than the prior membrane without polyamine.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: August 8, 2000
    Assignee: Exxon Research and Engineering Company
    Inventor: W. S. Winston Ho
  • Patent number: 6099719
    Abstract: A process for producing a lubricating oil basestock having at least 90 wt. % saturates and a VI of at least 105 by solvent extracting a feedstock to produce a raffinate, solvent dewaxing the raffinate, selectively hydroconverting the solvent dewaxed raffinate in a two step hydroconversion zone followed by a hydrofinishing zone and a dewaxing zone.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: August 8, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, William J. Murphy, Thomas J. Ford
  • Patent number: 6096940
    Abstract: Discloses novel biodegradable high performance hydrocarbon base oils useful as lubricants in engine oil and industrial compositions, and process for their manufacture. A waxy, or paraffinic feed, particularly a Fischer-Tropsch wax, is reacted over a dual function catalyst to produce hydroisomerization and hydrocracking reactions, at 700.degree. F.+ conversion levels ranging from about 20 to 50 wt. %, preferably about 25-40 wt. %, sufficient to produce a crude fraction, e.g., a C.sub.5 -1050.degree. F.+ crude fraction, containing 700.degree. F.+ isoparaffins having from about 6.0 to about 7.5 methyl branches per 100 carbon atoms in the molecule. The methyl paraffins containing crude fraction is topped via atmospheric distillation to produce a bottoms fraction having an initial boiling point between about 650.degree. F. and 750.degree. F. which is then solvent dewaxed, and the dewaxed oil is then fractionated under high vacuum to produce biodegradable high performance hydrocarbon base oils.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: August 1, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert Jay Wittenbrink, Richard Frank Bauman, Daniel Francis Ryan
  • Patent number: 6093867
    Abstract: A process for selectively producing C.sub.3 olefins from a catalytically cracked or thermally cracked naphtha stream. The naphtha stream is introduced into a process unit comprised of a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone. The naphtha feedstream is contacted in the reaction zone with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures ranging from about 500.degree. to 650.degree. C. and a hydrocarbon partial pressure from about 10 to 40 psia. Vapor products are collected overhead and the catalyst particles are passed through the stripping zone on the way to the catalyst regeneration zone. Volatiles are stripped with steam in the stripping zone and the catalyst particles are sent to the catalyst regeneration zone where coke is burned from the catalyst, which is then recycled to the reaction zone.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: July 25, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Paul K. Ladwig, John Ernest Asplin, Gordon F. Stuntz, Tan-Jen Chen
  • Patent number: 6090742
    Abstract: A process for the preparation of a catalyst which is highly active for the synthesis of hydrocarbons from mixtures of hydrogen and carbon monoxide. A silica or silica-containing support is treated with a solution containing both an Iron Group metal, or metals, and nitrous acid, nitric acid, or a nitro-containing organo, or nitro-containing hydrocarbyl compound, or compounds, sufficient to hydroxylate the surface thereof and increase the number of hydroxyl groups on the surface of the support such that the metal component will be highly dispersed, this increasing the activity of the catalyst in a hydrocarbon synthesis reaction as contrasted with that of a catalyst of similar composition, similarly prepared except that the support component of the catalyst was not contacted and simultaneously treated with both the Iron Group metal and the acid.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: July 18, 2000
    Assignee: Exxon Research and Engineering Company
    Inventor: Claude C. Culross
  • Patent number: 6090761
    Abstract: A lubricating oil suitable for machinery which may come into incidental contact with food is described, which contains a food grade base oil and a combination of food grade additives including a thickener, an antioxidant, a rust inhibitor, an anti-wear additive, an antifoamant, optionally a metal passivator, and a combination of up to 2.5 wt % emulsifier and coupling agent. The lubricating oil exhibits good resistance to wear, oxidation and rust, and reduced sludging at equipment surface temperatures of about 200.degree. F. and higher.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: July 18, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Kevin David Butler, Robert D. Dewalt, Christopher Jeffrey Still Kent
  • Patent number: 6087308
    Abstract: A lubricating oil suitable for machinery which may come into incidental contact with food is described, which contains a food grade base oil and a combination of food grade additives including a thickener, an antioxidant, a rust inhibitor, an anti-wear additive, an antifoamant, optionally a metal passivator, and 0.2 wt % or less coupling agent. The lubricating oil exhibits good resistance to wear, oxidation and rust, and reduced sludging at equipment surface temperatures of about 200.degree. F. and higher.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: July 11, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Kevin David Butler, Christopher Jeffrey Still Kent
  • Patent number: 6087405
    Abstract: Supports for Fischer-Tropsch catalysts with increased strength and attrition resistance are formed by incorporating both silica and alumina into a support comprised primarily of titania; whereupon Fischer-Tropsch active metals can be composited with the support; the catalysts being particularly useful in slurry reactions.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: July 11, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Stanislaw Plecha, Charles H. Mauldin, Larry E. Pedrick
  • Patent number: 6083889
    Abstract: An oil composition useful as an electrical or transformer oil is provided. The composition comprises a major amount of a paraffinic oil having a Cleveland open cup flash point of more than about 200.degree. C. and an effective amount of an additive system including at least one hindered phenolic antioxidant and a tolyltriazole metal deactivator.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: July 4, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Jacob Ben Angelo, Christopher Jeffrey Still Kent
  • Patent number: 6077419
    Abstract: Pillared clays composited with Group VIII metals or Group VI metals may be used for the hydroconversion with excellent activity maintenance, of Fischer Tropsch waxes, boiling above about 700.degree. F.
    Type: Grant
    Filed: September 6, 1997
    Date of Patent: June 20, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert J. Wittenbrink, Jack W. Johnson
  • Patent number: 6075061
    Abstract: The instant invention is directed to an integrated process for producing a hydroisomerate in the presence of sulfur comprising the steps of (a) separating a natural gas into a first stream comprising a C.sub.5 + gas field condensate containing sulfur and a second stream comprising said natural gas having said a C.sub.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: June 13, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert Jay Wittenbrink, Bruce Randall Cook, Paul Joseph Berlowitz
  • Patent number: 6066679
    Abstract: Partially deactivated catalyst in a slurry hydrocarbon synthesis process is rejuvenated employing a cyclic rejuvenation process in which syngas or CO flow into the slurry is stopped to stop the hydrocarbon synthesis reaction, the CO purged out of the slurry with a purge gas in the presence of hydrogen, the catalyst rejuvenated with a hydrogen containing rejuvenating gas and the hydrocarbon synthesis reaction restarted by passing the synthesis gas feed back into the reactor. All or a portion of the purge gas and/or the rejuvenating gas may be recycled during the respective purge and/or rejuvenation. The hydrogen required during the purge is typically part of the purge gas.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: May 23, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Stephen C. Leviness, Willard N. Mitchell
  • Patent number: 6063349
    Abstract: The HCN concentration of HCN containing synthesis gas streams is reduced by treatment with a Group IVA metal oxide and optionally containing a Group IIB, Group VA, or Group VIA metal or metals, at reaction conditions preferably suppressing Fischer-Tropsch activity.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: May 16, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Russell J. Koveal, Jr., Keith E. Corkern