Patents Assigned to ExxonMobil Chemical Patents Inc.
  • Patent number: 11352567
    Abstract: Processes for converting an organic-material-containing feed comprising contacting the feed with a plurality of fluidized hot particles in a pyrolysis zone to product a first pyrolysis effluent, optionally contacting the first pyrolysis effluent with a quenching stream to impart additional pyrolysis of organic materials contained in the quenching stream, separating at least a portion of the particles and feeding them to a combustion zone where the particles are heated to an elevated temperature, optionally contacting the combustion zone effluent with a second organic-material-containing stream to produce, e.g., syngas, and feeding at least a portion of the heated particles to the pyrolysis zone.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: June 7, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mohsen N. Harandi, Paul F. Keusenkothen
  • Patent number: 11352451
    Abstract: Processes are provided which include copolymerization using two different metallocene catalysts, one capable of producing high Mooney-viscosity polymers and one suitable for producing lower Mooney-viscosity polymers having at least a portion of vinyl terminations. The two catalysts may be used together in polymerization to produce copolymer compositions of particularly well-tuned properties. For instance, polymerizations are contemplated to produce high-Mooney metallocene polymers that exhibit excellent processability and elasticity, notwithstanding their high Mooney viscosity. Other polymerizations are also contemplated in which lower-Mooney metallocene polymers are produced, which also exhibit excellent processability and elasticity, while furthermore having excellent cure properties suitable in curable elastomer compound applications.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: June 7, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Francis C. Rix, Rhutesh K. Shah, Rainer Kolb, Jo Ann M. Canich, Peijun Jiang, Periagaram S. Ravishankar, Syamal Tallury
  • Patent number: 11352576
    Abstract: In some examples, a vapor phase product and a liquid phase product can be separated from a heated mixture that can include steam and a hydrocarbon. The liquid phase product can be catalytically cracked in the presence of a fluidized catalyst to produce a catalytically cracked effluent. A bottoms product can be separated from the catalytically cracked effluent. The bottoms product can be hydroprocessed to produce a hydroprocessed product. For example, the bottoms product can be hydroprocessed under pre-treater hydroprocessing conditions to produce a pre-treated bottoms product and the pre-treated bottoms product can be hydroprocessed under bottoms product hydroprocessing conditions to produce the hydroprocessed product. A hydroprocessor heavy product can be separated from the hydroprocessed product. The vapor phase product can be steam cracked to produce a steam cracker effluent. A tar product and an upgraded steam cracker effluent can be separated from the steam cracker effluent.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: June 7, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. DeLaney, John J. Monson, Teng Xu, Kendele S. Galvan
  • Patent number: 11345766
    Abstract: This invention relates to a compound represented by the formula: TyLAMXn-2 wherein: A is a substituted or unsubstituted tetrahydro-as-indacenyl group bonded to M; L is substituted or unsubstituted monocyclic or polycyclic arenyl ligand or monocyclic or polycyclic heteroarenyl ligand bonded to M; M is a group 3, 4, 5, or 6 transition metal (preferably group 4); T is a bridging group bonded to L and A; y is 0 or 1, indicating the absence or presence of T; X is a leaving group, typically a univalent anionic ligand, or two Xs are joined and bound to the metal atom to form a metallocycle ring, or two Xs are joined to form a chelating ligand, a diene ligand, or an alkylidene; n is the oxidation state of M and is 3, 4, 5, or 6.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 31, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jo Ann M. Canich, Vyatcheslav V. Izmer, Dmitry S. Kononovich, Alexander Z. Voskoboynikov
  • Patent number: 11331658
    Abstract: Processes for activating precious metal-containing catalysts. The processes can decrease the amount of high purity hydrogen required for starting up a catalytic conversion process such as transalkylation of heavy aromatics, without detrimental impact to the metal activity. The processes can include a low temperature treatment step with a high purity first gas, such as hydrogen generated by electrolysis and/or reformer hydrogen diluted with high purity inert gas, and a high temperature treatment step with a low purity second gas such as the reformer hydrogen. Also, the processes can include mixing a hydrogen gas of high or low purity with a high purity inert gas to form a gas mixture with a proportion of hydrogen no less than 2% and a reduced carbon monoxide concentration relative to the low purity hydrogen, and contacting the catalyst with the gas mixture.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: May 17, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul Podsiadlo, Robert G. Tinger, Todd E. Detjen, Jesus A. Ramos, Jeffrey L. Andrews, Travis D. Sparks
  • Patent number: 11332420
    Abstract: Processes are described for isomerizing one or more C14-C24 alpha olefins to produce an isomerization mixture comprising one or more C14-C24 internal olefins comprising contacting an olefinic feed comprising the one or more C14-C24 alpha olefins with a catalyst under isomerization conditions, wherein the catalyst comprises a microporous crystalline aluminosilicate having an MWW framework. The resulting isomerization mixture typically exhibits a low pour point with maintained biodegradability properties as compared to the olefinic feed, and is particularly useful in drilling fluid and paper sizing compositions.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: May 17, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ronald Raymond Hill, Jr., Renyuan Yu, Elizabeth G. Mahoney, Anatoly I. Kramer, Wenyih F. Lai, Paul F. Keusenkothen, Nan Hu, Andrew P. Broenen, James R. Lattner
  • Patent number: 11332422
    Abstract: Methods for the production of para-xylene include flowing a xylenes-containing stream comprising PX, meta-xylene (MX), and ortho-xylene (OX), to a first crystallization stage. In addition, the methods include lowering a temperature of the xylenes-containing stream to below the eutectic point of the xylenes-containing stream within the first crystallization stage to crystallize at least some of the PX and at least some of one of both of the MX and the OX within the xylenes-containing stream. Further, the methods include separating the xylenes-containing stream into a first crystallization effluent stream and a first filtrate stream.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: May 17, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Robert G. Tinger
  • Patent number: 11325294
    Abstract: Embodiments of an invention disclosed herein relate to devices, processes, and systems for processing one or more polymers.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: May 10, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Thomas R. Veariel, Yuet Meng Chu, Costas G. Gogos, Chong Peng
  • Patent number: 11325999
    Abstract: Methods for producing polyethylene compositions having broader melt index ratio and narrower molecular weight distribution in high pressure multi-feed tubular reactors are provided. The methods are useful in multi-feed tubular reactors comprising three or more reaction zones. The first reaction zone or the first and second reaction zone having a peak temperature that is lower than standard peak temperatures for polymerization of ethylene monomer in a tubular reactor.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: May 10, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: William J. Zafian, Henri A. Lammens
  • Patent number: 11311870
    Abstract: A process for reducing the loss of catalyst activity of a Ziegler-Natta catalyst is provided. The process includes preparing a Ziegler-Natta (ZN) catalyst by contacting the ZN catalyst with at least one aluminum alkyl compound to produce a reduced ZN catalyst and storing and/or transporting the reduced ZN catalyst for at least 20 days at a temperature of 25° C. or less. The reduced ZN catalyst may be used for polymerizing polyolefin polymers.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: April 26, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Edward F. Smith, George A. Vaughan, Michael Awe, James R. Sollen, Ronald N. Cooke, Sateesh K. Rajput, Ahmed H. Ali
  • Patent number: 11312669
    Abstract: A process for olefin oligomerization can include: contacting a feedstock comprising at least one C3 to C20 olefin/paraffin under oligomerization conditions in the presence of a Si/Al ZSM-23 catalyst having no amine treatment and a Si/Al2 molar ratio of 20 to 60 and/or a Si/Al/Ti ZSM-23 catalyst having no amine treatment, a Si/Al2 molar ratio of 20 to 60, and a Ti/Al molar ratio of 0.1 to 3; and recovering an oligomeric product comprising dimers having a branching index of less than 2.1, trimers having a branching index of less than 2.1, and tetramers having a branching index of less than 2.1.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: April 26, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shiwen Li, Alan A. Galuska, Jennifer A. Carvajal Diaz, Mika L. Shiramizu, Wenyih F. Lai, Lara A. Truter
  • Patent number: 11306162
    Abstract: The present disclosure provides bridged metallocene catalyst compounds including at least two —Si—Si— bridges, catalyst systems including such compounds, and uses thereof. Catalyst compounds of the present disclosure can be hafnium-containing compounds having one or more cyclopentadiene ligand(s) substituted with one or more silyl neopentyl groups and linked with at least two Si—Si-containing bridges. In another class of embodiments, the present disclosure is directed to polymerization processes to produce polyolefin polymers from catalyst systems including one or more olefin polymerization catalysts, at least one activator, and an optional support.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: April 19, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Subramaniam Kuppuswamy, Matthew W. Holtcamp, Matthew S. Bedoya, Laughlin G. McCullough
  • Patent number: 11306415
    Abstract: A process for producing a nonwoven fabric comprising forming a polymer composition comprising a primary polypropylene and at least one secondary polyolefin; in a spunbond process, forming fibers then fabric from the polymer composition; and exposing the fabric to an heating environment within a range from 50° C. to 250° C.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: April 19, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: William M. Ferry, Luis A. Sotomayor, Gregory E. Keys
  • Patent number: 11299567
    Abstract: This application relates to copolymer compositions and copolymerization processes, as well as to lubricating oil compositions comprising such copolymer compositions as viscosity index improvers, and base oil. The copolymer compositions may be made using two different metallocene catalysts: one capable of producing high molecular weight copolymers; and one suitable for producing lower molecular weight copolymers having at least a portion of vinyl terminations, and the copolymer compositions produced thereby. Copolymer compositions may comprise (1) a first ethylene copolymer fraction having high molecular weight, exhibiting branching topology, and having relatively lower ethylene content (based on the weight of the first ethylene copolymer fraction); and (2) a second ethylene copolymer fraction having low molecular weight, exhibiting linear rheology, and having relatively higher ethylene content (based on the weight of the second ethylene copolymer fraction).
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 12, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jingwen Zhang, Rainer Kolb, Andy H. Tsou, Periagaram S. Ravishankar, Jo Ann M. Canich, Francis C. Rix
  • Patent number: 11302459
    Abstract: A bimodal polyethylene is provided. The bimodal polyethylene may include a high molecular weight portion having a weight average molecular weight (Mw) of 100,000 g/mol to 1,000,000 g/mol and a low molecular weight portion having a Mw of 10,000 g/mol to 80,000 g/mol. Polymer extrudates, such as cable-coatings and/or wire-coatings and films, including the bimodal polyethylene as well as methods of making the polymer extrudates are also provided.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: April 12, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Antonios K. Doufas, James M. Farley, Bruce J. Savatsky, Richard E. Pequeno, Giriprasath Gururajan, Nicolas M. De Ketelaere
  • Patent number: 11299561
    Abstract: A continuous process for preparing an ethylene-based polyolefin, the process comprising maintaining a polymerization mixture at a temperature at or above the lower critical phase separation temperature of the polymerization mixture, while, during said step of maintaining, maintaining the polymerization mixture at steady state, where the polymerization mixture is substantially uniform in temperature, pressure, and concentration, where the polymerization mixture includes solvent, monomer including ethylene and optionally monomer copolymerizable with ethylene, a single-site catalyst system, and polymer resulting from the polymerization of the monomer, where the monomer and the polymer are dissolved in the solvent, and where the polymer is an ethylene-based polyolefin having a molecular weight distribution (Mw/Mn) of less than 2.30.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: April 12, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gabor Kiss, Thomas T. Sun
  • Patent number: 11292973
    Abstract: Processes and systems for upgrading a hydrocarbon feed. The process can include feeding a hydrocarbon feed, catalyst particles, and molecular hydrogen (H2) into a separation zone. The hydrocarbon feed and H2 can be contacted in the presence of the catalyst particles under hydrotreating conditions in the separation zone that can include contacting under a total pressure of less than 3,500 kilopascals-gauge. The H2 can be fed into the separation zone at a rate of no greater than 270 cubic meters of H2 per cubic meter of the hydrocarbon feed, where the volume of H2 and hydrocarbon feed are based on a temperature of 25 C and a pressure of 101 kilopascals-absolute. A vapor phase hydrocarbon stream and a liquid phase hydrocarbon stream can be obtained from the separation zone. At least a portion of the vapor phase hydrocarbon stream can be fed into a pyrolysis reaction zone to produce a pyrolysis effluent.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: April 5, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ramanathan Sundararaman, James R. Lattner, Michael W. Weber, David T. Ferrughelli, Saurabh S. Maduskar, Federico Barrai, Jeevan S. Abichandani
  • Patent number: 11292857
    Abstract: Processes and systems for preparing copolymers of ethylene and a polar comonomer include contacting an initial feed comprising ethylene and a polar comonomer with a first polymerization initiator in a continuous stirred tank reactor to form a first polymer, which may then be contacted with second polymerization initiator in a plug flow reactor to form a second polymer. The process yields a second polymer having a lower melt flow index (and higher molecular weight) with high polar comonomer content. The polar comonomer may be, for example, vinyl acetate to prepare a poly(ethylene-vinyl acetate) copolymer having a vinyl acetate content of up to about 33% while maintaining the melt flow rate less than about 10 g/10 minutes without the use of fillers.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: April 5, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: William J. Zafian
  • Patent number: 11286435
    Abstract: In some examples, a vapor phase product and a liquid phase product can be separated from a heated mixture that includes steam and a hydrocarbon. The vapor phase product can be steam cracked to produce a steam cracker effluent. The steam cracker effluent can be contacted with a quench fluid to produce a cooled steam cracker effluent. The steam cracker effluent can be at a temperature of >300° C. when initially contacted with the quench fluid. A tar product and a process gas that can include ethylene and propylene can be separated from the cooled steam cracker effluent. The tar product can be hydroprocessed to produce a first hydroprocessed product. A hydroprocessor heavy product and a utility fluid product can be separated from the first hydroprocessed product. The quench fluid can be or include at least a portion of the utility fluid product.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: March 29, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. DeLaney, John J. Monson, Teng Xu, Kendele S. Galvan
  • Patent number: 11285465
    Abstract: The present disclosure provides catalyst compounds including a nonsymmetric bridged amine bis(phenolate), catalyst systems including such, and uses thereof. Catalyst compounds, catalyst systems, and processes of the present disclosure can provide high comonomer content and high molecular weight polymers having narrow Mw/Mn values, contributing to good processability for the polymer itself and for the polymer used in a composition.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 29, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, David A. Cano, Catherine A. Faler, Margaret T. Whalley