Patents Assigned to ExxonMobil Technology & Engineering Company
  • Patent number: 11952887
    Abstract: A plunger lift system, as well as a method for monitoring plunger parameters within a wellbore using such a plunger lift system, are provided. The plunger lift system includes a lubricator attached to a wellhead at the surface and a plunger dimensioned to travel through the production tubing upon being released from the lubricator. The plunger lift system also includes magnetic sensor systems installed along the production tubing, where each magnetic sensor system includes a magnetic sensor for detecting the passage of the plunger as it travels through the production tubing, as well a communication device for transmitting communication signals between the magnetic sensor systems and a computing system located at the surface, where the computing system includes a processor and a non-transitory, computer-readable storage medium including computer-executable instructions that direct the processor to dynamically determine the plunger position and/or velocity based on the received communication signals.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: April 9, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Michael C. Romer, Michael C. Tschauner, Christopher C. Frazier, Andrew D. McFadden, Salvador G. Vela, III, Billy-Bob K. Walker, Adam J. Johnson
  • Patent number: 11947062
    Abstract: Velocity tomography using time lags of wave equation migration is disclosed. Seismic tomography is a technique for imaging the subsurface of the Earth with seismic waves by generated a migration velocity model from a multitude of observations using combinations of source and receiver locations. The migration velocity model may be updated in order to reduce depth differences of reflection events (also called residual depth errors (RDE)). Direct measurement of RDE may be difficult in certain complex subsurface areas. In such areas, the RDE may be reconstructed based on time lags of wave equation migration and then used to update the migration velocity model. In particular, the RDE may be directly reconstructed from the time lags of wave equation migration, such as based on a direct relation between RDE and the time lags.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: April 2, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventor: Jonathan Liu
  • Patent number: 11945736
    Abstract: The present disclosure relates to methods and systems for algae cultivation including the integration of electrochemical carbonate production for enhancing algae growth. More particularly, the present disclosure relates to methods and systems for producing a sodium hydroxide from brine using an electrochemical cell, contacting the sodium hydroxide stream with a CO2 gas sweep and producing a carbonate stream, and cultivating an algae slurry in a cultivation vessel comprising at least a portion of the carbonate stream.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: April 2, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Gregory R. Johnson, Everett J. O'Neal, Sarah E. Feicht
  • Patent number: 11939225
    Abstract: A composition can include a Rho zeolite with a RHO topology having a Si to B ratio or a Si to Al ratio greater than or equal to 8. Making such a composition can include heating an aqueous reaction mixture having a molar ratio of atomic Si to atomic B of about 4 to about 50 or a molar ratio of atomic Si to atomic Al of about 4 to about 50 in the presence of a C4-C6 diquat of N,2-dimethylbenzimidazole structure directing agent to a temperature of at least 75° C. to produce a Rho zeolite.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: March 26, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Joseph M. Falkowski, Hilda Bouza Vroman, Allen W. Burton, Eugene Terefenko, Kanmi Mao, Karl G. Strohmaier
  • Publication number: 20240093101
    Abstract: Methods of crude oil stabilization may include separating crude oil in a bulk separator into a first light hydrocarbon stream, a first water stream, and a first bottoms stream; separating the first bottoms stream in an intermediate pressure separator into a second light hydrocarbon stream, a second water stream, and a second bottoms stream; separating the second bottoms stream in a separator into a third light hydrocarbon stream, a third water stream, and a third bottoms stream; introducing a stripping gas stream comprising methane into the separator; storing the third bottoms stream in a vessel comprising an outlet for a fourth light hydrocarbon stream; treating at least a portion of the first, second, third, and fourth light hydrocarbon streams in a vapor treatment process to form a final light hydrocarbon stream; and recycling at least a portion of the final light hydrocarbon stream to the separator.
    Type: Application
    Filed: September 6, 2023
    Publication date: March 21, 2024
    Applicant: ExxonMobil Technology and Engineering Company
    Inventors: John T. CULLINANE, Christopher HARDY
  • Publication number: 20240093100
    Abstract: Provided herein are catalysts for dewaxing of a feedstock, the catalyst comprising between about 40 wt. % and about 99.9 wt. % zeolite, between about 0 wt. % and about 40 wt. % binder and at least about 0.1 wt. % noble metal, as well as catalyst systems, methods and products produced using the catalysts. The zeolite having a crystal comprising a largest included sphere less than or equal to about 7.5 angstroms, a largest diffusing sphere greater than or equal to about 5.0 angstroms, and a silica to alumina ratio greater than or equal to about 100:1. The catalyst having a temperature-programmed ammonia desorption (“TPAD”) of less than about 0.25 mmol/g.
    Type: Application
    Filed: January 24, 2022
    Publication date: March 21, 2024
    Applicant: ExxonMobil Technology and Engineering Company
    Inventors: William J. Knaeble, Scott J. Weigel, Preeti Kamakoti
  • Patent number: 11933144
    Abstract: Offshore systems and methods may be configured for offshore power generation and carbon dioxide injection for enhanced gas recovery for gas reservoirs. For example, a method may include: providing an offshore facility including a gas turbine, and a gas separator; producing a produced gas from a gas reservoir to the offshore facility; combusting the produced gas in a gas turbine to produce power and a flue gas; at least partially removing nitrogen from the flue gas in a gas separator to produce a carbon dioxide-enriched flue gas and a nitrogen-enriched flue gas; compressing the carbon dioxide-enriched flue gas in a gas compressor to produce a compressed gas; and injecting the compressed gas from the gas compressor into the gas reservoir, wherein 80 mol % or more of hydrocarbon in the produced gas is combusted and/or injected into the gas reservoir.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: March 19, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Rui Wang, Mark Christian Ausborn, Zhen Li, Elliot M. Chang-Tang
  • Patent number: 11932815
    Abstract: Catalyst systems are provided, along with corresponding methods, for single stage conversion of synthesis gas to fuel boiling range products with increased selectivity for either naphtha production (C5-C9) or distillate production (C10-C20). The increased selectivity for naphtha production or distillate production is provided in conjunction with a reduced selectivity for higher boiling range components (C21+).
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: March 19, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Aaron R. Garg, Lei Zhang, Micaela Taborga Claure, Stuart L. Soled
  • Patent number: 11926793
    Abstract: Systems and methods are provided for improving product yields and/or product quality during co-processing of fast pyrolysis oil in a fluid catalytic cracking (FCC) reaction environment. The systems and methods can allow for co-processing of an increased amount of fast pyrolysis oil while reducing or minimizing coke production for a feedstock including fast pyrolysis oil and a conventional FCC feed. The reducing or minimizing of coke production can be achieved in part by adding a low molecular weight, non-ionic surfactant to the mixture of fast pyrolysis oil and conventional FCC feed.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: March 12, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Xiaochun Xu, Hyung Rae Kim, Chengrong Wang, Colin L. Beswick
  • Patent number: 11927391
    Abstract: A method and apparatus for liquefying a feed gas stream comprising natural gas and carbon dioxide. A method includes compressing an input fluid stream to generate a first intermediary fluid stream; cooling the first intermediary fluid stream with a first heat exchanger to generate a second intermediary fluid stream, wherein a temperature of the second intermediary fluid stream is higher than a carbon dioxide-freezing temperature for the second intermediary fluid stream; expanding the second intermediary fluid stream to generate a third intermediary fluid stream, wherein the third intermediary fluid stream comprises solid carbon dioxide; separating the third intermediary fluid stream into a fourth intermediary fluid stream and an output fluid stream, wherein the output fluid stream comprises a liquefied natural gas (LNG) liquid; and utilizing the fourth intermediary fluid stream as a cooling fluid stream for the first heat exchanger.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: March 12, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Robert D. Kaminsky, Marcel Staedter
  • Patent number: 11926795
    Abstract: Catalyst systems are provided for reforming of hydrocarbons, along with methods for using such catalyst systems. The catalyst systems can be deposited or otherwise coated on a surface or structure, such as a monolith, to achieve improved activity and/or structural stability. The metal oxide support layer can correspond to a thermally stable metal oxide support layer, such as a metal oxide support layer that is thermally phase stable at temperatures of 800° C. to 1600° C. The catalyst systems can be beneficial for use in cyclical reaction environments, such as reverse flow reactors or other types of reactors that are operated using flows in opposing directions and different times within a reaction cycle.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: March 12, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Changmin Chun, Wesley Sattler, Joseph E. Gatt, Keith R. Hajkowski, Everett J. O'Neal, William R. Gunther, Anastasios Skoulidas
  • Patent number: 11919876
    Abstract: Processes and systems for producing olefin epoxides with three or more carbon atoms by oxidation of the corresponding branched hydrocarbons using oxygen are disclosed. An example process for producing olefin epoxides may include oxidizing a branched alkane to produce at least an organic hydroperoxide. The example process may further include epoxidizing a branched alkene by a catalytic reaction with least a portion of the organic hydroperoxide to produce at least an olefin epoxide and an alcohol. The example process may further include converting at least a portion of the alcohol to either additional branched alkane and/or additional branched alkene.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 5, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Kun Wang, Timothy D. Shaffer
  • Patent number: 11918952
    Abstract: Systems and methods are provided for performing CO2 sorption and desorption using a sorbent structure with an integrated heat pump. The integrated heat pump can allow at least a portion of the heat generated during sorption to be recovered by forming steam from water. The steam raised during the sorption process can then be compressed and optionally heated to raise the temperature of the steam. The compressed and optionally heated steam can then be used as at least a portion of the steam for desorption of CO2 in the same sorbent bed or a different sorbent bed. By recovering the heat of sorption to raise steam, substantial energy savings can be achieved relative to a conventional process.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: March 5, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventor: Everett J. O'Neal
  • Publication number: 20240068132
    Abstract: Nucleation enhancement and/or growth rate improvement of mesophase in pitch compositions derived from hydrocarbon feedstocks can be achieved by: reacting in a reaction zone a blend comprising an isotropic feed and a seeding agent, to produce a reacted pitch having a mesophase content of about 10 vol % to 100 vol %, based on the total volume of the reacted pitch, and a softening point (Tsp) below 400° C.; wherein the seeding agent is about 50 wt % or less, based on the total weight of the blend; wherein the seeding agent has a mesophase content of about 0.01 vol % to 100 vol %, based on the total volume of the seeding agent.
    Type: Application
    Filed: November 10, 2021
    Publication date: February 29, 2024
    Applicant: ExxonMobil Technology and Engineering Company
    Inventors: Manesh Gopinadhan, Stuart E. Smith, Nicole M. Callen, Clarence E. Chase, Kazem V. Edmond, Srinivasan Rajagopalan, Eric B. Sirota, Daniel J. Ryan
  • Patent number: 11914101
    Abstract: A method for partitioning a search direction when using least squares reverse time migration (LSRTM) is provided. LSRTM may be used iteratively in order to improve imaging accuracy. As part of LSRTM, multiple local line searches may be performed. In particular, image space may be partitioned, such as by using a set of masks. The search direction, such as the gradient, may be partitioned using the set of masks. Local line searches may be performed for each partition of the search direction, resulting in finding respective line search constants. The respective line search constants may then be used for iterating the model in order to improve imaging accuracy.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: February 27, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Valeriy V. Brytik, Junzhe Sun, Carey M. Marcinkovich, Hong Zhao, Erik R. Neumann
  • Patent number: 11905813
    Abstract: A slurry including a density-tunable heavy fracturing fluid and a method for completing a hydrocarbon well using such a slurry are provided herein. The slurry includes a proppant and the density-tunable heavy fracturing fluid, where the density-tunable heavy fracturing fluid includes a pseudo heavy fluid suspension, a concentrated aqueous solution of a soluble heavy compound, and/or a high-density organic solution. The density of the density-tunable heavy fracturing fluid is between 1.25 grams/milliliter (g/ml) and 3.4 g/ml. Moreover, the density of the density-tunable heavy fracturing fluid is selected based on the density of the proppant. According to the method provided herein, the slurry is used to provide for more effective placement of the proppant within the fractures than can be achieved using only a slurry including conventional fracturing fluid and the proppant.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: February 20, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Timothy J. Nedwed, Dragan Stojkovic, Lee J. Hall
  • Patent number: 11906689
    Abstract: Hydrocarbon wells include a wellbore, a fracture that extends from the wellbore, and an electromagnetic contrast material positioned within the fracture. The hydrocarbon wells also include a downhole electromagnetic transmitter, which is configured to direct an electromagnetic probe signal incident upon the electromagnetic contrast material, and a downhole electromagnetic receiver, which is configured to receive an electromagnetic resultant signal from the electromagnetic contrast material. Methods for monitoring fracture morphology of a fracture that extends from a wellbore of a hydrocarbon well include flowing an electromagnetic contrast material into a fracture and generating an electromagnetic probe signal. The methods also include modifying the electromagnetic probe signal with the electromagnetic contrast material to generate an electromagnetic resultant signal. The methods further include receiving the electromagnetic resultant signal and determining the morphology of the fracture.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: February 20, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Kevin H. Searles, Ted A. Long, Prajnajyoti Mazumdar
  • Patent number: 11906503
    Abstract: Methods for identifying hydrocarbon contamination sources may include fingerprinting hydrocarbons using isotopocule analyses for BTEX compounds. For example, methods for identifying hydrocarbon contamination sources may comprise: extracting BTEX compounds from a sample; measuring the isotopocule composition of the BTEX compounds; and determining a characteristic of the sample based on the isotopocule composition. Such characteristics may include, but are not limited to, the characteristic of the sample comprises one or more selected from the group consisting of: a source of the sample, a condition at which the sample formed or was last equilibrated, a migration time from a source to a sample location, weathering of the sample, and degree to which the sample is anthropogenic and naturally-occurring.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: February 20, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: David T. Wang, Muhammad Asif, Michael J. Formolo
  • Patent number: 11898976
    Abstract: A method for determining the pore types of a core sample can include: determining a porosity of a core sample, wherein the core sample has a permeability of 10 mD or less; saturating the core sample with a NMR saturation fluid to achieve a saturated core sample; taking a NMR measurement of fluids in the saturated core sample; and deriving a volume for a pore type based on the porosity based on a correlation between the NMR measurement and a NMR signal to fluid volume calibration, wherein the pore type is selected from the group consisting of a nanopore, a micropore, a macropore, and any combination thereof.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: February 13, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Pavel Kortunov, Hubert E. King, Harry W. Deckman
  • Patent number: 11890599
    Abstract: The present disclosure provides an active material comprising a mixed metal oxide in a hydrotalcite derived rocksalt structure, a processes to convert paraffins to corresponding olefins and or heavier hydrocarbons using the active material, and a method of preparing the active material.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: February 6, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Kun Wang, Yi Du, Bradley D. Wooler, Jonathan E. Mitchell, Christine E. Kliewer