Patents Assigned to ExxonMobil Upstream Research Co.
  • Patent number: 7904248
    Abstract: A method of hydrodynamics-based gridding (Hydro-Grids) for creating geologic models of subsurface volumes, such as reservoirs, is disclosed. Geologic data is obtained. Vertical grid surfaces are created. Lateral grid surfaces are created to correspond to surfaces of constant geologic time during the deposition of sediments in the subsurface volume. Geologic properties within each cell are represented as values within each cell created by the vertical and lateral surfaces. Reservoir performance is simulated using the represented geologic properties of the subsurface volume. A hydrocarbon reservoir is developed based on the simulated reservoir performance.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: March 8, 2011
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Dachang Li, Tao Sun, Chun Huh, Chris J. Donofrio, Max Deffenbaugh, John C. Van Wagoner
  • Patent number: 7894989
    Abstract: A method is disclosed for determining earth vertical electrical anisotropy from offshore electromagnetic survey measurements. The method requires both online and offline data, which includes at least one electromagnetic field component sensitive at least predominantly to vertical resistivity and another component sensitive at least predominantly to horizontal resistivity. Using a horizontal electric dipole source, online EZ and offline HZ measurements are preferred. For a horizontal magnetic dipole source, online HZ and offline EZ data are preferred. magnetotelluric data may be substituted for controlled source data sensitive to horizontal resistivity. Maxwell's equations are solved by forward modeling or by inversion, using resistivity models of the subsurface that are either isotropic or anisotropic.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: February 22, 2011
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Leonard J. Srnka, Xinyou Lu, Olivier M. Burtz
  • Patent number: 7894299
    Abstract: Method for designing a converted mode (PS or SP) seismic survey to accomplish specified vertical and lateral resolution objectives at target depth. An equation (181) is provided for determining the minimum bandwidth required for a desired vertical resolution at a selected scattering angle, as a function of incident and reflected wave velocities, one of which is the P-wave velocity and the other is the S-wave velocity. A second equation (182) is provided for determining migration acceptance angle from the desired vertical and lateral resolutions. Source and receiver apertures may then be determined by ray tracing. Finally, a third equation (183) is provided for the maximum bin size to avoid aliasing, given the migration acceptance angle and a maximum frequency needed to achieve the bandwidth requirement. Source and receiver spacing may then be based on the maximum bin size.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: February 22, 2011
    Assignee: ExxonMobil Upstream Research Co.
    Inventor: Mark A. Meier
  • Patent number: 7845407
    Abstract: Systems and associated methods for use in the production of hydrocarbons are described. The systems include a first tubular member and a second tubular member at least partially enclosing the first tubular member. Each of the first and second tubular members have a non-permeable longitudinal section and a permeable longitudinal section. The non-permeable longitudinal section of the second tubular member is disposed adjacent to the permeable longitudinal section of the first tubular member. Similarly, the permeable longitudinal section of the second tubular member is disposed adjacent to the non-permeable longitudinal section of the first tubular member. The permeable longitudinal section of the second tubular member is separated from the permeable longitudinal section of the first tubular member by a specific longitudinal distance.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: December 7, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Franz D. Bunnell, Manh V. Phi
  • Patent number: 7844430
    Abstract: Disclosed are various reservoir model generation methods. At least one of the methods includes providing a first framework having a plurality of cells, wherein the first framework is a reservoir framework and providing a second framework having a plurality of cells, wherein the volume of the first framework is greater than the volume of the second framework.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: November 30, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Lester H. Landis, Jr., Peter N. Glenton
  • Patent number: 7840356
    Abstract: Method for completely specifying orientation of electromagnetic receivers dropped to the ocean bottom in an electromagnetic survey. Survey data are selected, rejecting noisy data with long offsets and data where the receiver has saturated with short offsets (61). A model is developed comprising three independent receiver orientation angles completely specifying the receiver orientation in three dimensions, and an earth resistivity model including a water layer and possibly an air layer (62). Maxwell's equations, applied to the model and the selected data, are then inverted to determine the receiver orientations (63).
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: November 23, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventor: Xinyou Lu
  • Patent number: 7830744
    Abstract: Method for determining reservoir permeability from Stoneley wave attenuation extracted from conventional sonic logs by inversion of the full Biot wave equations for a porous medium. Frequency-dependent Stoneley-wave attenuation is extracted by analyzing array sonic measurements. Then, based on Biot's full theory applied to a borehole model and the standard logs (gamma ray, caliper, density, neutron, resistivity, sonic, etc.), a simulation model with the same parameters as the Stoneley-wave measurements is built. Next, a theoretical Stoneley-wave attenuation is computed for a given permeability. Finally, reservoir permeability is determined by comparing the modeled Stoneley-wave attenuation with the measured Stoneley-wave attenuation by an iterative inversion process.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: November 9, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Xianyun Wu, Hezhu Yin
  • Patent number: 7822562
    Abstract: Method for removing air wave noise from shallow water controlled source electromagnetic survey data, using only the measured data and conductivity values for sea water (140) and air. The method is a calculation performed numerically on CSEM data and resulting in an estimate of those data that would have been acquired had the water layer extended infinitely upward from the seafloor. No properties of the sub-sea sediments are used. Synthetic electromagnetic field data are generated for (a) an all water model (141) and (b) an air-water model (146-147) of the survey region. These simulated results are then used to calculate (148-150) electromagnetic field values corresponding to a water-sediment model with water replacing the air half space, which represent measured data adjusted to remove air wave noise.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: October 26, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventor: Willen E. Dennis
  • Patent number: 7808420
    Abstract: Method for organizing computer operations on a system of parallel processors to invert electromagnetic field data (11) from a controlled-source electromagnetic survey of a subsurface region to estimate resistivity structure (12) within the subsurface region. Each data processor in a bank of processors simultaneously solves Maxwell's equations (13) for its assigned geometrical subset of the data volume (14). Other computer banks are simultaneously doing the same thing for data associated with a different source frequency, position or orientation, providing a “fourth dimension” parallelism, where the fourth dimension requires minimal data passing (15). In preferred embodiments, a time limit is set after which all processor calculations are terminated, whether or not convergence has been reached.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 5, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventor: James J. Carazzone
  • Patent number: 7805249
    Abstract: Method for separating responses of multiple transmitters m a controlled source electromagnetic survey by using mutually orthogonal transmitter waveforms and transforming the combined response to the frequency domain (144) The mutual orthogonality can be based disjoint frequency spectra or on phase encoding of a common waveform element (FIG. 14).
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: September 28, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Philip J. Summerfield, Dennis E. Willen
  • Patent number: 7801681
    Abstract: The method for correcting the phase of measured electric signals or magnetic signals of field data from a controlled source electromagnetic survey (CSES) by comparing the measured field data corresponding to a selected frequency to the simulated data for various signal source receiver offsets (71) and correcting the phases of the actual data based on the phase difference for a selected range of small signal offsets (76) based on a go-electric model.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: September 21, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Dmitriy A. Pavlov, Dennis E. Willen, James J. Carazzone
  • Patent number: 7792766
    Abstract: Method for determining an expected value for a proposed reconnaissance electromagnetic (or any other type of geophysical) survey using a user-controlled source. The method requires only available geologic and economic information about the survey region. A series of calibration surveys are simulated with an assortment of resistive targets consistent with the known information. The calibration surveys are used to train pattern recognition software to assess the economic potential from anomalous resistivity maps. The calibrated classifier is then used on further simulated surveys of the area to generate probabilities that can be used in Value of Information theory to predict an expected value of a survey of the same design as the simulated surveys. The calibrated classifier technique can also be used to interpret actual CSEM survey results for economic potential.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: September 7, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Richard T. Houck, Dmitriy Pavlov
  • Patent number: 7783462
    Abstract: Described herein are methods of evaluating reservoirs. At least one of the methods includes providing a three dimensional reservoir framework having a plurality of cells; assigning one or more constant reservoir property values to some or all of the cells to provide a first three dimensional reservoir model; updating the first three dimensional reservoir model by populating some or all of the cells with one or more variable reservoir property values to provide a second three dimensional reservoir model; and updating the second three dimensional reservoir model by populating some or all of the cells with one or more reservoir property values derived from seismic data to provide a third three dimensional reservoir model. Other methods are also described.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Lester H. Landis, Jr., Peter N. Glenton, Leslie A. Wahrmund, Sameer A. Khan
  • Patent number: 7769572
    Abstract: This invention relates generally to a method of simulating the signal of an electromagnetic source using one or more dipole sources. In the method a dipole source is located at an excitation location corresponding to a segment of the electromagnetic source to be simulated. The dipole source is activated, and an electromagnetic signal recorded at one or more receiver locations. This process is repeated for additional excitation locations corresponding to additional segments of the electromagnetic source. The data from the sequence of dipole source excitation locations is processed to determine the simulated signal of the electromagnetic source.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Leonard J. Srnka, James J. Carazzone
  • Patent number: 7761270
    Abstract: The invention relates to a computer system and method for simulating transport phenomena in a complex system. The computer system comprises a logic interface that enables a user of the computer system to dynamically construct logic to customize simulation of the physical system, a means for converting the constructed logic into corresponding object-oriented code, a means for integrating the object-oriented code with the main simulation system which comprises a simulation data model and simulation algorithms, resulting in an integrated simulation system, and a means for executing the integrated simulation system.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: July 20, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Attila D. Banki, Stephen C. Netemeyer
  • Patent number: 7761237
    Abstract: This patent delineates methods for quantifying and mitigating dip-induced azimuthal AVO effects in seismic fracture detection using Azimuthal AVO analysis by accurately accounting for the divergence correction and azimuthal dependence of the reflection angle. Solutions are provided for three cases: (1) dipping isotropic reservoirs; (2) anisotropic reservoirs with fractures aligned in arbitrary direction; and (3) anisotropic reservoirs where vertical fractures are aligned perpendicular to the dip direction.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: July 20, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Wenjie Dong, Chih-Ping Lu
  • Patent number: 7752023
    Abstract: A method for enhancing allocation of fluid flow rates among a plurality of wellbores coupled to surface facilities is disclosed. The method includes modeling fluid flow characteristics of the wellbores and reservoirs penetrated by the wellbores. The method includes modeling fluid flow characteristics of the surface facilities. An optimizer adapted to determine an enhanced value of an objective function corresponding to the modeled fluid flow characteristics of the wellbores and the surface facilities is then operated. The objective function relates to at least one production system performance parameter. Fluid flow rates are then allocated according to the optimization.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 6, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventor: Usuf Middya
  • Patent number: 7743006
    Abstract: A method and apparatus are disclosed for modeling a system to estimate values and associated uncertainties for a first set of variables describing the system. A second set of system variables is selected, where the second set is directly or indirectly causally related to the first set of variables. Data is obtained or estimated for each variable in the second set and the quality of selected data is appraised. A network is formed with nodes including both sets of variables and the quality appraisals, having directional links connecting interdependent nodes, the directional links honoring known causality relationships. A Bayesian Network algorithm is used with the data and quality information to solve the network for the first set of variables and their associated uncertainties.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: June 22, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Alex Woronow, Karen M. Love
  • Patent number: 7676349
    Abstract: Method for constructing an integrated rock physics model that simulates both shale anisotropy and stress-induced anisotropy of clastic rocks. In the model, the total pore volume is divided into three parts according to the estimated shale volume and effective stress: (1) clay-related pores, (2) sand-related pores, and (3) microcracks (mainly in the sand component). The pore space is then partitioned into the clay-related and sand-related pores using a scheme first disclosed by Xu and White in 1995. The model simulates shale anisotropy via the preferred orientation of clay-related pores and stress-induced anisotropy via the preferred orientation of microcracks, which is controlled by the differential stresses. Laboratory measurements or well logs are needed to establish a relationship between crack density and the effective stress.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: March 9, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Shiyu Xu, Rebecca L. Saltzer, Robert G. Keys
  • Patent number: RE41829
    Abstract: A method for seismic exploration using nonlinear conversions between electromagnetic and seismic energy, with particular attention to the electromagnetic source waveform used. According to the invention, seismic returns from a source waveform are correlated with a reference waveform, with both waveforms custom designed to minimize both correlation side lobes and interference from linear electroseismic effects. A waveform element is selected which may be sequenced by a binary or similar digital code embodying the desired custom design to generate an input sweep with the needed depth penetration and noise suppression. Correlation of the seismic response with the reference waveform in a data processing step mathematically aggregates the seismic response from the input sweep into a single wavelet. Preferred binary digital codes include prescribed variations of maximal length shift-register sequences. Also, an apparatus for generating the desired waveforms.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Scott C. Hornbostel, Arthur H. Thompson, Thomas C. Halsey, Robert A. Raschke, Clint A. Davis