Patents Assigned to ExxonMobil Upstream Research
  • Patent number: 10082000
    Abstract: A zonal isolation apparatus for an open-hole wellbore completed with a gravel pack having sections of blank pipe intermediate selected sections of sand screen, comprising a blank liner, with a first packer and second packer disposed therein. The first and second packers are set adjacent to sections of blank pipe and seal an annular area formed between the blank liner and the surrounding sections of sand screen at the first and second sections of blank pipe. The flow of fluids into the wellbore intermediate the first and second sections of blank pipe is inhibited.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: September 25, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Marcel A. Grubert, David E. Courtnage, Jing Wan
  • Patent number: 10080992
    Abstract: Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve passing streams through adsorbent bed units to treat the feed stream to form a stream that complies with nitrogen rejection specifications. The process may involve using at least a portion of the nitrogen rejection process product streams as a purge for the swing adsorption process.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: September 25, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ananda K. Nagavarapu, Ransdall K. Smith, Russell H. Oelfke
  • Patent number: 10080991
    Abstract: Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve passing streams through adsorbent bed units to remove contaminants, such as water, from the stream. As part of the process, the adsorbent bed unit is purged with a purge stream that is provided at a temperature less than 450° F. The de-contaminated stream may be used with a liquefied natural gas (LNG) plant or other subsequent process requiring a de-contaminated stream. The swing adsorption process may involve a combined TSA and PSA process, which is utilized to remove contaminants from the feed stream.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: September 25, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Robert A. Johnson, Harry W. Deckman, Bruce T. Kelley, Russell H. Oelfke, Shwetha Ramkumar
  • Patent number: 10079564
    Abstract: A non-transitory, computer readable medium stores instructions executable by a processor of an electronic device. The instructions include instructions to determine that a transient event is occurring in an electrical grid coupled to an EGR gas turbine system, wherein the transient event is an under-frequency or an under-voltage event. The instructions also include instructions to increase a flow rate of fuel to a combustor of the EGR gas turbine system in response to the transient event when the EGR gas turbine system is operating in a non-stoichiometric combustion mode. The instructions further include instructions to increase a flow rate of oxidant to the combustor before increasing the flow rate of fuel to the combustor, or to decrease a local consumption of the electrical power to increase a portion of the electrical power that is exported to the attached electrical grid, or both, in response to the transient event when the EGR gas turbine system is operating in a stoichiometric combustion mode.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: September 18, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Karl Dean Minto, Bin Xu, Jonathan Carl Thatcher, Aaron Lavene Vorel
  • Patent number: 10073190
    Abstract: Method and system are described for modeling one or more geophysical properties of a subsurface volume. The method includes computing vector volumes to enhance subsurface modeling and update these vector volumes. The vectors are estimated (106) from the data, for example dip or azimuth, and then the vector volume may be updated by an optimization process (808). Flattening the original data (802) may assist the vector estimation, and associating data traces and samples of traces with labels (108) may assist the flattening. The vector volume may then be used to extract horizons (110) and generate a stratigraphic model (112) to enhance the process of producing hydrocarbons (114).
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: September 11, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Pavel Dimitrov, Matthias Imhof
  • Patent number: 10065712
    Abstract: Modular structure for protecting an offshore vessel in a body of water from forces of ice features in the body of water is described. The modular protective structure comprising a protective harbor wall constructed and arranged to enclose a harbor space and to counteract the forces of ice features in the body of water. The modular protective structure also comprising a flotation support supporting the protective harbor wall. The flotation support having a capacity to position the modular protective structure at a raised position where the flotation support maintains at least a portion of the protective harbor wall above the water surface such that a harbor is established and the offshore vessel is protected from the forces of ice features in the body of water. Methods which utilize such a modular protective harbor structure are also described.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: September 4, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Julian de Freitas Hallai, Neven Krstulović-Opara
  • Patent number: 10061060
    Abstract: A method and apparatus for generating a simulation grid for a reservoir model based on a geological model comprising horizons, constraints and multiple geological grid cells. A pre-image is generated corresponding to the geological grid cells, the pre-image comprising a surface and the modeling constraints being mapped onto the surface. A constrained two-dimensional grid is generated on the pre-image, the two-dimensional grid comprising multiple grid cells. Simulation layer boundaries are selected from the geological model and the constrained two-dimensional grid is projected onto the simulation layer boundaries. Prismatic cells are then generated to form the three-dimensional simulation grid. The method of generating a grid as herein described may be incorporated in existing reservoir simulators.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: August 28, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Larisa V. Branets, Elena Kartasheva, Igor V. Krasnogorov, Valeriy Kubyak, Xiaohui Wu
  • Patent number: 10054714
    Abstract: A method, including: obtaining an initial geophysical model; modeling a forward wavefield with viscoacoustic or viscoelastic wave equations; modeling an adjoint wavefield with adjoint viscoacoustic or adjoint viscoelastic wave equations, wherein the adjoint viscoacoustic wave equations are based on an auxiliary variable that is a function of pressure and a memory variable or the adjoint viscoelastic wave equations are based on a combination of stress and a memory variable, respectively; obtaining a gradient of a cost function based on a combination of a model of the forward wavefield and a model of the adjoint wavefield; and using the gradient of the cost function to update the initial geophysical model and obtain an updated geophysical model.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: August 21, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Huseyin Denli, Alex Kanevsky
  • Patent number: 10053968
    Abstract: A completion assembly designed to perforate a section of casing along a wellbore, comprises a perforating gun, a canister, and a locator device. The canister contains ball sealers that are dimensioned to seal perforations, while the locator device is a casing collar locator that senses the location of the assembly within the wellbore based on the spacing of casing collars. The completion assembly also includes an on-board controller configured to send an actuation signal to the perforating gun to cause one or more detonators to fire when the locator has recognized a selected location of the completion assembly, thereby perforating the casing, and to release the ball sealers from the canister. Methods for seamlessly perforating and fracturing multiple zones along a wellbore are also provided, using a select-fire perforating gun.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: August 21, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Randy C. Tolman, Pavlin B. Entchev, Timothy I. Morrow
  • Patent number: 10053781
    Abstract: A system for inhibiting the corrosion of pipelines and flowlines. The system includes a solid formulation comprising a corrosion inhibitor; a container structured and arranged to permit the flow of fluids therethrough and confine the solid formulation; and a module structured and arranged to position the container within a flowpath of the pipeline or flowline and maintain its axial position. A method of inhibiting the corrosion of pipelines and flowlines and an apparatus for inhibiting the corrosion of pipelines and flowlines are also provided.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: August 21, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Stefanie Lynn Asher
  • Patent number: 10046251
    Abstract: An apparatus is disclosed for maintaining constant fluid pressure and equalized fluid flow among a plurality of downcomer lines through which liquid from a tower is directed. A substantially annular fluid distribution belt is disposed at the circumference of the tower. The fluid distribution belt collects liquid from the tower. At least two outlets direct liquid from the fluid distribution belt out of the tower and into a corresponding number of downcomer lines disposed external to the tower.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 14, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Edward J. Grave, Nicholas F. Urbanski
  • Patent number: 10048403
    Abstract: Method and system is described for modeling one or more strength properties of a subsurface volume. The method provides an enhanced process for upscaling to simplify data in a manner that accounts for problems with conventional techniques. The method involves simplifying the petrophysical data and/or layers to provide an upscaling approach that accounts for the influences on the strength properties. The properties may then be utilized to enhance a subsurface model and used to enhance hydrocarbon recovery.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: August 14, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Nora L. DeDontney, Brian R. Crawford, Bashar Alramahi
  • Patent number: 10048396
    Abstract: Method for determining visualization rendering parameters for seismic data to heighten subtle differences. The full data volume and at least one sub-volume are processed in the inventive method (12). Statistics are extracted for the data or attributes of the data (13). Rendering parameters are derived based on comparing and computing the statistical information for the volume and sub-volumes (14).
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: August 14, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Mark Dobin, Yao-chou Cheng, Patricia Montoya
  • Patent number: 10041306
    Abstract: A rigid riser system including a rigid riser and one or more fatigue performance enhancers. The rigid riser includes a plurality of rigid metal sections welded together to form a plurality of girth weld joints. The one or more fatigue performance enhancers are positioned over one or more of the plurality of girth weld joints of the rigid riser to enhance the fatigue resistance and/or fatigue life. The body of the fatigue performance enhancer may include a central region and two end regions with the central region having a greater average radial cross-sectional thickness than each of the end regions. Methods of enhancing fatigue performance of the rigid riser and fatigue performance enhancers are also disclosed.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: August 7, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Howard H. Wang, Wan-Cai Kan
  • Patent number: 10041340
    Abstract: A method of recovering heavy oil from a subterranean heavy oil reservoir. The method includes conducting an exothermic chemical reaction of feedstock chemicals to produce a reaction product that that is a first solvent and injecting an injected solvent including the reaction product into the subterranean heavy oil reservoir. The injected solvent has an injected solvent temperature equal to an elevated temperature resulting from heat generated by the at least one exothermic chemical reaction and the injecting occurs before the injected solvent temperature has decreased to an ambient reservoir temperature.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: August 7, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Tapantosh Chakrabarty
  • Patent number: 10040022
    Abstract: Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve passing streams through adsorbent bed units to remove contaminants, such as water, from the stream. As part of the process, the adsorbent bed unit may include additional space for the valves of the adsorbent bed unit.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: August 7, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Tracy A. Fowler, Shwetha Ramkumar, Jeffrey W. Frederick, Ananda K. Nagavarapu, Sebastian Chialvo, Robert F. Tammera, John W. Fulton
  • Patent number: 10036829
    Abstract: Method for transforming a discontinuous, faulted subsurface reservoir into a continuous, fault-free space where a complete geological model based on selected geological concepts can be built and updated efficiently. Faults are removed in reverse chronological order (62) to generate a pseudo-physical continuous layered model, which is populated with information according to the selected geological concept (68). The fault removal is posed as an optimal control problem where unknown rigid body transformations and relative displacements on fault surfaces are found such that deformation of the bounding horizons and within the volume near the fault surface are minimized (63). A boundary-element-method discretization in an infinite domain is used, with boundary data imposed only on fault surfaces. The data populated model may then be mapped back to the original faulted domain such that a one-to-one mapping between continuous and faulted spaces may be found to a desired tolerance (72).
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: July 31, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Kaveh Ghayour, Linfeng Bi, Xiaohui Wu
  • Patent number: 10036820
    Abstract: A method includes retrieving a seismic data set, receiving training data that includes one or more seed points of an identified geobody, determining a geobody trajectory of the identified geobody, based on the one or more seed points of the identified geobody, displaying the geobody trajectory, receiving inputs expanding the geobody trajectory, shrinking the geobody trajectory, confirming the geobody trajectory, or a combination thereof, training a classification algorithm using the geobody trajectory, running the classification algorithm on the seismic data set, receiving an output of one or more sets of voxels from the classification algorithm, skeletonizing the one or more sets of voxels to present the one or more sets of voxels as a set of possible geobody trajectories, and retraining the classification algorithm based on feedback received from a reviewer.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: July 31, 2018
    Assignees: GENERAL ELECTRIC COMPANY, EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Ali Can, Erhan Bas, Dongrui Wu, Jie Yu, Leslie Wahrmund
  • Patent number: 10035096
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: July 31, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, P. Scott Northrop, Peter C. Rasmussen, Paul L. Tanaka, Martin N. Webster, Wieslaw J. Roth, Edward W. Corcoran, Jr.
  • Patent number: 10036818
    Abstract: Method for reducing computational time in inversion of geophysical data to infer a physical property model (91), especially advantageous in full wavefield inversion of seismic data. An approximate Hessian is pre-calculated by computing the product of the exact Hessian and a sampling vector composed of isolated point diffractors (82), and the approximate Hessian is stored in computer hard disk or memory (83). The approximate Hessian is then retrieved when needed (99) for computing its product with the gradient (93) of an objective function or other vector. Since the approximate Hessian is very sparse (diagonally dominant), its product with a vector may therefore be approximated very efficiently with good accuracy. Once the approximate Hessian is computed and stored, computing its product with a vector requires no simulator calls (wavefield propagations) at all. The pre-calculated approximate Hessian can also be reused in the subsequent steps whenever necessary.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: July 31, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yaxun Tang, Sunwoong Lee