Patents Assigned to Fairfield Industries
  • Publication number: 20180003836
    Abstract: Systems and methods of optical link communication with seismic data acquisition units are provided. The systems and methods can perform at least portions of seismic data acquisition survey. A plurality of seismic data acquisition units can be deployed on a seabed. An optical communications link can be established between an extraction vehicle and at least one of the seismic data acquisition units. A frequency of the at least one seismic data acquisition unit can be syntonized or synchronized via the optical communications link. The at least one seismic data acquisition unit can be instructed to enter a low power state subsequent to syntonizing the frequency of the at least one seismic data acquisition unit. The seismic data acquisition unit can exit the low power state and acquire seismic data in an operational state.
    Type: Application
    Filed: June 16, 2017
    Publication date: January 4, 2018
    Applicant: Fairfield Industries, Inc.
    Inventors: Michael Morris, Tom O'Brien
  • Publication number: 20180003838
    Abstract: Systems and methods of performing a seismic survey in a marine environment are provided. The system includes a seismic data acquisition unit disposed on a seabed in the marine environment. The seismic data acquisition unit includes a local pressure sensor, an optical transmitter and an optical receiver to determine one or more pressure values. The system includes an extraction vehicle including a reference pressure sensor, an optical transmitter, and an optical receiver to establish an optical communications link with the seismic data acquisition unit, and generate reference pressure data. The system includes at least one of the local pressure sensor and the one or more pressure values calibrated based on the reference pressure data generated by the extraction vehicle.
    Type: Application
    Filed: June 16, 2017
    Publication date: January 4, 2018
    Applicant: Fairfield Industries, Inc.
    Inventors: Michael Morris, William Guyton
  • Publication number: 20180003837
    Abstract: Systems and methods of performing a seismic survey are provided. The system includes a seismic data acquisition unit having a transmitter window disposed in a first aperture of a lid, and having a receiver window disposed in a second aperture of the lid. A first gasket is positioned between the transmitter window and the first aperture to provide a clearance greater than a threshold to allow the transmitter window to deform. A second gasket is positioned between the receiver window and the second aperture to provide a clearance greater than the threshold to allow the receiver window to deform. At least one of the transmitter window and the receiver window of the seismic data acquisition unit are configured to pass at least one of optical and electromagnetic communications to or from an extraction vehicle via at least one of a transmitter window and a receiver window of the extraction vehicle.
    Type: Application
    Filed: June 16, 2017
    Publication date: January 4, 2018
    Applicant: Fairfield Industries, Inc.
    Inventors: Michael Morris, William Guyton, Matthew Stubbe, Chris Nikirk
  • Patent number: 9841522
    Abstract: The present disclosure is directed to loading a helical conveyor for underwater seismic exploration. The system includes a case and a first conveyor having a helix structure provided within the case to support one or more ocean bottom seismometer (“OBS”) units. The case can include a first opening at a first end of the first conveyor and a second opening at a second end of the first conveyor. The system can include a base to receive at least a portion of the case. The system can include a second conveyor positioned external to the case that can move an OBS unit into the first opening at the first end of the first conveyor. The first conveyor can receive the OBS unit and direct the OBS unit towards the second opening at the second end of the first conveyor.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: December 12, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Roger L. Fyffe, Etienne Marc
  • Patent number: 9834417
    Abstract: A payload control apparatus includes a spring-line a spring line actuating mechanism, a spring line flying sheave over which a load line can pass, and a spring line, wherein the spring line flying sheave can move into a position either where the flying sheave is spaced from and in non-contact with or contacting but non-path-altering in relation to the load line, further wherein the spring-line flying sheave can be moved into another position such that the flying sheave engages the load-line and alters its path length. Thus, when a marine surface vessel falls in a heave event that would otherwise cause the payload at the end of the load line to fall as well, the flying sheave will move to increase the path length causing a shortening of the path length, thereby preventing the payload from falling.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: December 5, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventor: Stephen W. Jewell
  • Patent number: 9829594
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: November 28, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 9829589
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: November 28, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 9825713
    Abstract: An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: November 21, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: William Hopewell, Philip Lacovara, Michael Morris
  • Patent number: 9753169
    Abstract: Machinery and methods are described whereby a free flying, remotely operated vehicle (ROV) can safely capture and take on board lightly managed seismic sensor devices (payload) while they are in-transit via a surface vessel in a (deep) water column. ROV payload can be replenished without the need for the ROV to return to the surface vessel to receive additional payload and to do so without the need for heavy launch and recovery machinery. The reverse process of returning payload from the ROV to the surface vessel is also disclosed.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: September 5, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventor: Stephen W. Jewell
  • Patent number: 9739901
    Abstract: A method of performing a seismic survey including: deploying nodal seismic sensors at positions in a survey region; activating a plurality of seismic sources; and using the nodal seismic sensors to record seismic signals generated in response to the activation of the plurality of signals.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 22, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Etienne Marc, Cliff Ray, James Nelson Thompson
  • Patent number: 9720116
    Abstract: In one aspect, a seismic data acquisition unit is disclosed including a closed housing containing: a seismic sensor; a processor operatively coupled to the seismic sensor; a memory operatively coupled to the processor to record seismic data from the sensor; and a power source configured to power the sensor, processor and memory. The sensor, processor, memory and power source are configured to be assemble as an operable unit in the absence of the closed housing.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 1, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: William Guyton, John C. Downey, Geoff Rice, Christopher T. Nikirk
  • Patent number: 9715027
    Abstract: The present invention relates to a method of processing seismic signals comprising: receiving a set of seismic signals, applying a wavelet transformation to the set of signals and generating transformed signals across a plurality of scales. Then for each scale determining coherence information indicative of the transformed signals and generating a comparison matrix comparing the transformed signals, then outputting seismic attribute information based on combined coherence information.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: July 25, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventor: Adam Gersztenkorn
  • Patent number: 9694974
    Abstract: An item storage, dispensing, and receiving apparatus includes a frame assembly having a height and length, including at least one section thereof having two opposing side wall sections, wherein each opposing side wall section includes vertically spaced rails disposed on an inner surface thereof such that each rail on a respective side wall section is located opposite a corresponding rail on the opposing side wall section, further wherein the at least one section has an open space fully extending between the vertically spaced rails between the two opposing side wall sections over the height and length, and a conveyance mechanism located within the open space along at least a portion of the length, wherein the conveyance mechanism is movable in a vertical direction in the open space along the height.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: July 4, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Stephen W. Jewell, Larry E. Berges
  • Patent number: 9645271
    Abstract: Embodiments described herein relate to an apparatus and method of transferring seismic equipment to and from a marine vessel and subsurface location. In one embodiment, a marine vessel is provided. The marine vessel includes a deck having a plurality of seismic sensor devices stored thereon, two remotely operated vehicles, each comprising a seismic sensor storage compartment, and a seismic sensor transfer device comprising a container for transfer of one or more of the seismic sensor devices from the vessel to the sensor storage compartment of at least one of the two remotely operated vehicles.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: May 9, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Reagan Neil Woodward, Jr., James N. Thompson
  • Patent number: 9630691
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: April 25, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Publication number: 20170090052
    Abstract: Systems and methods of detecting marine seismic survey parameters are provided. A data processing system can obtain seismic data from seismic data acquisition units disposed on a seabed responsive to an acoustic signal propagated from an acoustic source through a water column. The data processing system can determine from the seismic data, a direct arrival time for the acoustic signal at each of the plurality of seismic data acquisition units, and can obtain an estimated depth value of each of the plurality of seismic data acquisition units and an estimated water column transit velocity of the acoustic signal. The data processing system can apply a depth model and a water column transit velocity model to the estimated depth value and to the estimated water column transit velocity determine an updated depth value and an updated water column transit velocity for each of the plurality of seismic data acquisition units.
    Type: Application
    Filed: September 24, 2015
    Publication date: March 30, 2017
    Applicant: FAIRFIELD INDUSTRIES INCORPORATED
    Inventor: Carsten Udengaard
  • Patent number: 9562984
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by a plurality of wireless seismic data acquisition units in a seismic system. The receiver is capable of replicating local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver is capable of replicating local version of remote common time reference for the purpose of time stamping local node events. The receiver is capable of being placed in a low power, non-operational state over periods of time during which the seismic data acquisition unit continues to record seismic data, thus conserving unit battery power. The system implements a method to correct the local time clock based on intermittent access to the common remote time reference. The method corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 7, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 9500757
    Abstract: The transmission system combines a self-contained, wireless seismic acquisition unit and a wireless, line of site, communications unit to form a plurality of individual short-range transmission networks and also a mid-range, line of sight transmission network.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 22, 2016
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventor: Clifford H. Ray
  • Publication number: 20160327667
    Abstract: Apparatus and methods to operationally deploy land-based seismic nodes. An autonomous or semi-autonomous vehicle includes apparatus for placing, monitoring, testing, servicing, and collecting nodes in a harsh environment such as, e.g., tundra or desert. Associated methods of node deployment and retrieval are disclosed including a ‘rollover deployment.
    Type: Application
    Filed: December 24, 2014
    Publication date: November 10, 2016
    Applicant: FAIRFIELD INDUSTRIES INCORPORATED D/B/A FAIRFIELDNODAL
    Inventors: James E. Blattman, William Hopewell
  • Patent number: 9488743
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: November 8, 2016
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton