Patents Assigned to Farapulse, Inc.
  • Patent number: 10625080
    Abstract: Systems, apparatus, and methods for ablation therapy are described herein, with a processor for confirming pacing capture or detecting ectopic beats. An apparatus includes a processor for receiving cardiac signal data captured by a set of electrodes, extracting a sliding window of the cardiac signal data, identifying a peak frequency over a subrange of frequencies associated with the extracted sliding window, detecting ectopic activity based at least on a measure of the peak frequency over the subrange of frequencies, in response to detecting ectopic activity, sending an indication of ectopic activity to a signal generator configured to generate pulsed waveforms for cardiac ablation such that the signal generator is deactivated or switched off from generating the pulsed waveforms. An apparatus can further include a processor for confirming pacing capture of the set of pacing pulses based on cardiac signal data.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: April 21, 2020
    Assignee: Farapulse, Inc.
    Inventor: Raju Viswanathan
  • Patent number: 10624693
    Abstract: Systems, tools and methods are disclosed for the selective and rapid application of DC voltage to drive irreversible electroporation, with the system controller capable of being configured to apply voltages to independently selected subsets of electrodes and capable of generating at least one control signal to maintain the temperature near an electrode head within a desired range of values. Electrode clamp devices are also disclosed for generating electric fields to drive irreversible electroporation while modulating temperature to elevate the irreversible electroporation threshold utilizing a variety of means such as cooling fluid or solid state thermoelectric heat pumps.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: April 21, 2020
    Assignee: Farapulse, Inc.
    Inventors: Steven R. Mickelsen, Raju Viswanathan, Allan Zingeler
  • Publication number: 20200114121
    Abstract: An apparatus includes a first catheter defining a first longitudinal axis and a first lumen. A first actuator can be coupled to the first catheter and configured to rotate about the first longitudinal axis to deflect a distal end of the first catheter relative to the first longitudinal axis. A second catheter can define a second longitudinal axis and a second lumen. At least a portion of the second catheter can be configured to slide within the first lumen. A magnetic member can be coupled to a distal end of the second catheter. The magnetic member can define a third lumen. The third lumen can be in fluid communication with the second lumen. A second actuator can be coupled to the second catheter and configured to move linearly along the second longitudinal axis so as to vary a spacing between the magnetic member and the first catheter.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Applicant: Farapulse, Inc.
    Inventors: Stephen A. LEEFLANG, Christian S. EVERSULL
  • Patent number: 10617867
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed in the context of esophageal ablation. An ablation device may include a first catheter defining a longitudinal axis and a lumen therethrough. A balloon may be coupled to the first catheter. The balloon may be configured to transition between a deflated configuration and an inflated configuration. A second catheter may extend from a distal end of the first catheter lumen. A set of splines including electrodes formed on a surface of each of the splines may couple to the distal end of the first catheter lumen and a distal portion of the second catheter. The second catheter may be configured for translation along the longitudinal axis to transition the set of splines between a first configuration and a second configuration.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 14, 2020
    Assignee: Farapulse, Inc.
    Inventors: Raju Viswanathan, Gary Long, Jean-Luc Pageard
  • Patent number: 10617467
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the device including a set of splines coupled to a catheter for medical ablation therapy. Each spline of the set of splines may include a set of electrodes formed on that spline. The set of splines may be configured for translation to transition between a first configuration and a second configuration.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: April 14, 2020
    Assignee: Farapulse, Inc.
    Inventors: Raju Viswanathan, Allan Zingeler, Gary Long, Jean-Luc Pageard
  • Publication number: 20200093539
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed herein, including an inflatable member for positioning an ablation device within a pulmonary vein ostium. An apparatus can include first and second shafts moveable relative to one another, first and second electrodes configured to generate an electric field for ablating tissue, and an inflatable member disposed between the first and second electrodes. In some embodiments, the inflatable member is configured to transition from an undeployed configuration to a deployed configuration in response to movement of the first and second shafts. In some embodiments, the inflatable member in the deployed configuration can engage a wall of a pulmonary vein ostium and direct the electric field generated by the first and second electrodes toward the wall.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 26, 2020
    Applicant: Farapulse, Inc.
    Inventors: Gary L. LONG, Raju VISWANATHAN, Jean-Luc PAGEARD, Benoit THIBAULT
  • Publication number: 20200046423
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes at least one electrode for ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
    Type: Application
    Filed: October 7, 2019
    Publication date: February 13, 2020
    Applicant: Farapulse, Inc.
    Inventors: Raju VISWANATHAN, Gary LONG, Jean-Luc PAGEARD, Brittney HACHEY
  • Publication number: 20200038104
    Abstract: Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage pulses to drive irreversible electroporation for minimally invasive transurethral prostate ablation. In one embodiment, a switch unit is used to modulate and apply voltage pulses from a cardiac defibrillator, while in another, the system controller can be configured to apply voltages to an independently selected multiplicity or subsets of electrodes. Devices are disclosed for more effective DC voltage application including the infusion of cooled fluid to elevate the irreversible electroporation threshold of urethral wall tissue and to selectively ablate regions of prostate tissue alone.
    Type: Application
    Filed: October 7, 2019
    Publication date: February 6, 2020
    Applicant: Farapulse, Inc.
    Inventor: Steven R. MICKELSEN
  • Patent number: 10517672
    Abstract: A catheter device for renal denervation ablation includes a flexible catheter shaft having an electrically insulating expandable member in its distal portion with at least one electrode located proximal to the member, at least one electrode located distal to the member, and with openings in the distal shaft with at least one opening proximal to the proximal electrode and one opening distal to the distal electrode of said electrode pair, said openings connected through an inner lumen in the catheter that provides a path for blood to flow through the expandable member. In one embodiment, the device comprises a flexible catheter shaft with a multiplicity of recessed paired electrodes disposed in recessed spaces in its distal portion, such that an electrically conducting portion of each electrode is exposed to the exterior of the catheter within a recessed space, and with an electrical insulator separating the electrodes of each pair.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: December 31, 2019
    Assignee: Farapulse, Inc.
    Inventor: Gary Long
  • Patent number: 10512505
    Abstract: A system includes a pulse waveform generator and an ablation device coupled to the pulse waveform generator. The ablation device includes at least one electrode configured for ablation pulse delivery to tissue during use. The pulse waveform generator is configured to deliver voltage pulses to the ablation device in the form of a pulsed waveform. The pulsed waveform can include multiple levels of hierarchy, and multiple sets of electrodes can be activated such that their pulsed delivery is interleaved with one another.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: December 24, 2019
    Assignee: Farapulse, Inc.
    Inventor: Raju Viswanathan
  • Patent number: 10512779
    Abstract: A system includes a pulse waveform generator and an ablation device coupled to the pulse waveform generator. The ablation device includes at least one electrode configured for ablation pulse delivery to tissue during use. The pulse waveform generator is configured to deliver voltage pulses to the ablation device in the form of a pulsed waveform. A first level of a hierarchy of the pulsed waveform includes a first set of pulses, each pulse having a pulse time duration, with a first time interval separating successive pulses. A second level of the hierarchy of the pulsed waveform includes a plurality of first sets of pulses as a second set of pulses, a second time interval separating successive first sets of pulses, the second time interval being at least three times the duration of the first time interval.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: December 24, 2019
    Assignee: Farapulse, Inc.
    Inventors: Raju Viswanathan, Gary Long
  • Patent number: 10507302
    Abstract: An apparatus includes a first catheter defining a first longitudinal axis and a first lumen. A first actuator can be coupled to the first catheter and configured to rotate about the first longitudinal axis to deflect a distal end of the first catheter relative to the first longitudinal axis. A second catheter can define a second longitudinal axis and a second lumen. At least a portion of the second catheter can be configured to slide within the first lumen. A magnetic member can be coupled to a distal end of the second catheter. The magnetic member can define a third lumen. The third lumen can be in fluid communication with the second lumen. A second actuator can be coupled to the second catheter and configured to move linearly along the second longitudinal axis so as to vary a spacing between the magnetic member and the first catheter.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: December 17, 2019
    Assignee: Farapulse, Inc.
    Inventors: Stephen A. Leeflang, Christian S. Eversull
  • Publication number: 20190336207
    Abstract: A system includes a pulse waveform generator and an ablation device coupled to the pulse waveform generator. The ablation device includes at least one electrode configured for ablation pulse delivery to tissue during use. The pulse waveform generator is configured to deliver voltage pulses to the ablation device in the form of a pulsed waveform. The pulsed waveform can include multiple levels of hierarchy, and multiple sets of electrodes can be activated such that their pulsed delivery is interleaved with one another.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 7, 2019
    Applicant: Farapulse, Inc.
    Inventor: Raju VISWANATHAN
  • Patent number: 10433906
    Abstract: Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage pulses to drive irreversible electroporation for minimally invasive transurethral prostate ablation. In one embodiment, a switch unit is used to modulate and apply voltage pulses from a cardiac defibrillator, while in another, the system controller can be configured to apply voltages to an independently selected multiplicity or subsets of electrodes. Devices are disclosed for more effective DC voltage application including the infusion of cooled fluid to elevate the irreversible electroporation threshold of urethral wall tissue and to selectively ablate regions of prostate tissue alone.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 8, 2019
    Assignee: Farapulse, Inc.
    Inventor: Steven R. Mickelsen
  • Patent number: 10433908
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes at least one electrode for ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: October 8, 2019
    Assignee: Farapulse, Inc.
    Inventors: Raju Viswanathan, Gary Long, Jean-Luc Pageard, Brittney Hachey
  • Publication number: 20190269912
    Abstract: A system includes a pulse waveform generator and an ablation device coupled to the pulse waveform generator. The ablation device includes at least one electrode configured for ablation pulse delivery to tissue during use. The pulse waveform generator is configured to deliver voltage pulses to the ablation device in the form of a pulsed waveform. A first level of a hierarchy of the pulsed waveform includes a first set of pulses, each pulse having a pulse time duration, with a first time interval separating successive pulses. A second level of the hierarchy of the pulsed waveform includes a plurality of first sets of pulses as a second set of pulses, a second time interval separating successive first sets of pulses, the second time interval being at least three times the duration of the first time interval.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 5, 2019
    Applicant: Farapulse, Inc.
    Inventors: Raju VISWANATHAN, Gary LONG
  • Patent number: 10322286
    Abstract: A system includes a pulse waveform generator and an ablation device coupled to the pulse waveform generator. The ablation device includes at least one electrode configured for ablation pulse delivery to tissue during use. The pulse waveform generator is configured to deliver voltage pulses to the ablation device in the form of a pulsed waveform. A first level of a hierarchy of the pulsed waveform includes a first set of pulses, each pulse having a pulse time duration, with a first time interval separating successive pulses. A second level of the hierarchy of the pulsed waveform includes a plurality of first sets of pulses as a second set of pulses, a second time interval separating successive first sets of pulses, the second time interval being at least three times the duration of the first time interval.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: June 18, 2019
    Assignee: Farapulse, Inc.
    Inventors: Raju Viswanathan, Gary Long
  • Publication number: 20190151015
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes at least one electrode for ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 23, 2019
    Applicant: Farapulse, Inc.
    Inventors: Raju VISWANATHAN, Gary LONG, Jean-Luc PAGEARD
  • Publication number: 20190069950
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the device including a set of splines coupled to a catheter for medical ablation therapy. Each spline of the set of splines may include a set of electrodes formed on that spline. The set of splines may be configured for translation to transition between a first configuration and a second configuration.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Applicant: Farapulse, Inc.
    Inventors: Raju VISWANATHAN, Allan ZINGELER, Gary LONG, Jean-Luc PAGEARD
  • Patent number: 10172673
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes at least one electrode for ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: January 8, 2019
    Assignee: Farapulse, Inc.
    Inventors: Raju Viswanathan, Gary Long, Jean-Luc Pageard