Abstract: A method of measuring surface sets on an object surface with a coordinate measurement device and a target scanner, includes providing the scanner having a body, a first retroreflector incorporating a pattern, a projector, a camera, and a processor, providing the device, selecting the source pattern of light; projecting the source pattern of light onto the object to produce the object pattern of light; imaging the object pattern of light onto the photosensitive array to obtain the image pattern of light; obtaining the pixel digital values for the image pattern of light; sending the first beam of light from the device to the first retroreflector; receiving the second beam of light from the first retroreflector; measuring the orientational and translational sets based at least in part on the second beam of light; determining the surface sets corresponding to the plurality of collinear pattern elements; and saving the surface sets.
Abstract: In a device for optically scanning and measuring an environment, where the device is a laser scanner having a light emitter which, by a rotary mirror, emits an emission light beam, with a light receiver which receives a reception light beam, which, after passing the rotary mirror and a receiver lens which has an optical axis, is reflected from an object in the environment of the laser scanner. The laser scanner also includes a color camera which takes colored pictures of the environment of the laser scanner, and a control and evaluation unit which, for a multitude of measuring points, determines the distance to the object and links it with the colored pictures, the color camera being arranged on the optical axis of the receiver lens.
Abstract: A method is provided for determining the three dimensional coordinates of points on the surface of an object. The method includes providing a structured light scanner and a coordinate measurement device. The coordinate measurement device tracks the location and orientation of the structured light scanner during operation. The location and orientation data is combined with image frames captured by the scanner to allow registration of the image frames relative to each other. The three-dimensional coordinates of points on the surface of the object may then be determined in the frame of reference of the coordinate measurement device.
Abstract: A portable articulated arm coordinate measuring machine (AACMM) is provided including a manually positionable articulated arm having opposed first and second ends. The arm includes multiple connected arm segments. Each arm segment has a longitudinal axis. Each arm segment includes a generally tubular core, an outer sleeve surrounding at least a portion of a length of the core, and at least one position transducer for producing a position signal. The outer sleeve is a cylindrical tube having a first portion at a first end and a second portion that extends from the first portion to an opposite end. The first portion is coupled to an end of the core. The first portion is shorter than the second portion and the second portion is configured to move relative to the core.
Type:
Grant
Filed:
June 1, 2012
Date of Patent:
October 27, 2015
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Clark H. Briggs, Brent Bailey, Kenneth Campbell
Abstract: A method for determining three-dimensional coordinates of an object point on a surface of an object, the method including steps of: providing a source, a projector, and a camera; in each of two instances: spatially modulating source light; sending a modulator pattern of light through the projector lens to form light spots; filtering the spots with a pinhole plate; propagating light from the light spots onto the object to produce a fringe pattern; imaging the object point with a camera lens onto an array point of the photosensitive array to obtain first and second electrical data values from the photosensitive array; and determining the three-dimensional coordinates of the first object point based at least in part on the first electrical data value, the second electrical data value, and a baseline length.
Abstract: A coordinate measurement device sends a first beam of light having first and second wavelengths to a target point. The device includes a fiber-optic coupler that combines the first and second wavelengths and launches them through an achromatic optical element to produce collimated and aligned light. The device also includes first and second motors, first and second angle measuring devices, a distance meter, and a processor that determines 3D coordinates of the target point based on the measured distance and two angles.
Abstract: An articulated arm coordinate measurement machine (AACMM) that includes a noncontact 3D measurement device, position transducers, a camera, and a processor operable to project a spot of light to an object point, to measure first 3D coordinates of the object point based on readings of the noncontact 3D measurement device and the position transducers, to capture the spot of light with the camera in a camera image, and to attribute the first 3D coordinates to the spot of light in the camera image.
Abstract: A measurement system includes a signal generator producing an RF modulation frequency and sampling frequency and sending the sampling frequency to an ADC, and sending the RF frequency to modulate a first light source to produce a first light; an optical system sending a portion of the first light to a reference optical detector a portion of the first light out a measurement device to a target that returns a second light to the optical system which sends the second light to a measure optical detector, the reference and measure optical detectors converting the optical signals into corresponding electrical signals; a first ADC channel receiving the electrical measure signal and producing digital measure values; a second ADC channel receiving the electrical reference signal and producing digital reference values; and a processor receiving the digital measure and reference values and calculating the device to target distance.
Abstract: Measuring three surface sets on an object surface with a measurement device and scanner, each surface set being 3D coordinates of a point on the object surface. The method includes: the device sending a first light beam to the first retroreflector and receiving a second light beam from the first retroreflector, the second light beam being a portion of the first light beam, a scanner processor and a device processor jointly configured to determine the surface sets; selecting the source light pattern and projecting it onto the object to produce the object light pattern; imaging the object light pattern onto a photosensitive array to obtain the image light pattern; obtaining the pixel digital values for the image light pattern; measuring the translational and orientational sets with the device; determining the surface sets corresponding to three non-collinear pattern elements; and saving the surface sets.
Abstract: Measuring with a system having retroreflector targets and a laser tracker includes storing a list of coordinates for three targets and at least one added point; capturing on a photosensitive array a portion of the light emitted by a light beam and reflected off the targets; obtaining spot positions on a photosensitive array of a tracker camera from the reflected light; determining a correspondence between three spot positions on the photosensitive array and the coordinates of the targets; directing a beam of light from the tracker to the targets based at least in part on the coordinates of the first target and the first spot position; measuring 3-D coordinates of the targets with the tracker; determining 3-D coordinates of the at least one added point based at least in part on the measured 3-D coordinates of the targets and the coordinates of the at least one added point.
Type:
Grant
Filed:
December 10, 2014
Date of Patent:
September 29, 2015
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Kenneth Steffey, Nils P. Steffensen, Robert E. Bridges
Abstract: A laser scanner measures 3D coordinates from a first position and a second position and uses a sensor unit that includes at least an accelerometer and gyroscope to register the 3D coordinates, the registration based at least in part on comparison to a measured sensor displacement to a preferred displacement value.
Type:
Grant
Filed:
September 24, 2014
Date of Patent:
September 15, 2015
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Reinhard Becker, Martin Ossig, Bernd-Dietmar Becker
Abstract: A method of correcting centering errors of a spherically mounted retroreflector (SMR) when the distance meter of a 3D coordinate measurement device is reset to a home reference distance.
Abstract: A device for optically scanning and measuring an environment is provided. The device includes a movable scanner having at least one first projector for producing at least one uncoded first pattern on an object in the environment. The scanner includes at least one camera for recording images of the object provided with the pattern and a controller coupled to the first projector and the camera. The device further includes at least one second projector which projects a stationary uncoded second pattern on the object while the scanner is moved. Wherein the controller has a processor configured to determine a set of three-dimensional coordinates of points on a surface of the object from a set of images acquired by the camera based at least in part on the first pattern. The controller is further configured to register the set of images relative based in part on the stationary second pattern.
Type:
Grant
Filed:
October 28, 2014
Date of Patent:
August 25, 2015
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Rolf Heidemann, Martin Ossig, Reinhard Becker
Abstract: A device for optically scanning and measuring an environment is provided. The device includes a first measurement device that emits a light beam in a direction to measure a distance to a remote target based at least in part on light reflected by the remote target. A three-dimensional camera coupled to a periphery of the first measurement device is configured to record an image of an object. A processor is operably coupled to the first measurement device and three-dimensional camera and is responsive to determine the three-dimensional coordinates of the measurement point based at least in part on the angles of rotation of the device and the distance. The processor further being responsive to determine the three-dimensional coordinates of a plurality of points on the object based at least in part on the angles of rotation of the device and the image.
Abstract: A laser scanner has a light emitter, a rotary mirror, a light receiver, a first beam splitter to send electromagnetic energy from an electromagnetic energy generator into the environment, a second beam splitter to send reflected electromagnetic energy to a spectroscopic energy detector, and a control and evaluation unit, the spectroscopic energy detector configured to determine wavelengths in the reflected electromagnetic energy.
Abstract: A method for determining three-dimensional coordinates of an object point on a surface of an object, the method including steps of: sending a beam of light to a diffraction grating; sending a first diffracted beam and a second diffracted beam to an objective lens to form at least two spots of light, which are passed through transparent regions of a plate to produce a first fringe pattern on the surface of the object; imaging the object point illuminated by the first fringe pattern onto a photosensitive array to obtain a first electrical data value; moving the plate to a second position; sending spots through plate to produce a second fringe pattern on the surface of the object; imaging the point onto the array point to obtain a second electrical data value; and calculating the three-dimensional coordinates of the first object point.
Type:
Grant
Filed:
July 9, 2012
Date of Patent:
July 28, 2015
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Robert E. Bridges, Ryan Kruse, Paul McCormack, Emmanuel Lafond
Abstract: A laser scanner for optically scanning and measuring an environment is provided. The laser scanner includes a light transmitter for emitting a light beam to measure a plurality of points in the environment, the light transmitter coupled to the rotating unit. A receiver is provided for receiving a reflected light beam reflected from the plurality of measurement points, the receiver being coupled to the rotating unit. A first image acquisition unit is configured to record a visible image of an area of the environment that includes the plurality of points. A sensing device is configured to record data of the area. A processor is operably coupled to the receiver, the first image acquisition unit and the sensing device, the processor is configured to associate a color value from the visible image and a recorded data value from the sensing device with each of the plurality of points.
Abstract: With a device for optically scanning and measuring an environment which is designed as a laser scanner, with a light emitter, which emits an emission light beam, with a light receiver which receives a reception light beam which is reflected by an object in the surroundings of the laser scanner or scattered otherwise, with a control and evaluation unit which determines the distance to the object for a multitude of measuring points, wherein the emission light beam is a superposition of three laser beams having different wave lengths, which define the three-dimensional color space.
Type:
Grant
Filed:
March 22, 2010
Date of Patent:
July 7, 2015
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Philipp Schumann, Reinhard Becker, Martin Ossig, Jürgen Gittinger