Abstract: This invention relates to the design and implementation of a large family of fast, efficient, hardware-friendly fixed-point multiplierless inverse discrete cosine transforms (IDCT) and the corresponding forward transform counterparts. All of the proposed structures comprises of butterflies and dyadic-rational lifting steps that can be implemented using only shift-and-add operations. The approach also allows the computational scalability with different accuracy-versus-complexity trade-offs. Furthermore, the lifting construction allows a simple construction of the corresponding multiplierless forward DCT, providing bit-exact reconstruction if properly pairing with our proposed IDCT. With appropriately-chosen parameters, all of the disclosed structures can easily pass IEEE-1180 test.
Abstract: A method and system of performing real-time video superresolution. A decoder receives a data stream representing a low resolution video and including global motion vectors relating to image motion between frames of the low resolution video. The decoder uses the global motion vectors from the received data stream and multiframe processing algorithms to derive a high resolution video from the low resolution video. The sharpness of the high resolution video may be enhanced.
Abstract: Methods of using motion estimation techniques with video encoders to provide significant data compression with respect to video signals so that the video signals may subsequently be reconstructed with minimal observable information loss. Methods include a fast fractional motion estimation scheme.
Type:
Grant
Filed:
November 14, 2006
Date of Patent:
April 23, 2013
Assignee:
FastVDO, LLC
Inventors:
Alexandros Tourapis, Pankaj N. Topiwala
Abstract: A reconstruction system for digital signals processed by the laplacian pyramid including a master lifting-based parameterization reconstruction scheme. The system also involves the design of low-complexity FIR linear-phase integer-coefficient filtering operators for lapacian pyramid decimation and interpolation stages that deliver a minimum mean-squared error reconstruction.
Type:
Grant
Filed:
December 31, 2007
Date of Patent:
April 10, 2012
Assignee:
FastVDO, LLC
Inventors:
Trac D. Tran, Lijie Liu, Pankaj N. Topiwala
Abstract: Disclosed are methods and apparatus for composing and communicating Digital Composition Coded Multisensory Messages (DCC MSMs). The present invention also relates to the design, composition, creation, and communication of the multisensory messages. Multisensory messages, while rich in content and meaning, are to be composable from a great variety of platforms, from cell phones to mainframes.
Abstract: A transform-based image compression framework called local zerotree (LZT) coding partitions the transform coefficients into small groups, each of which is encoded independently using popular zerotree algorithms. The LZT coder achieves similar coding performances as current state-of-the-art embedded coders. The advantage of this coding method is fourfold: (i) because of the reduction of memory buffering, LZT reduces the complexity of the codec implementation and increase the speed of the zerotree algorithm significantly, especially in hardware; (ii) LZT processes large images under limited memory constraint; (iii) LZT supports parallel processing mode as long as the transform in use has that capability; and (iv) LZT facilitates the coding/decoding of regions of interest. The penalty in coding performance is minute compared to global zerotree predecessors in that there are only a few extra bytes of side information.
Abstract: This invention introduces a class of multi-band linear phase lapped biorthogonal transforms with fast, VLSI-friendly implementations via lifting steps called the LiftLT. The transform is based on a lattice structure which robustly enforces both linear phase and perfect reconstruction properties. The lattice coefficients are parameterized as a series of lifting steps, providing fast, efficient in-place computation of the transform coefficients as well as the ability to map integers to integers. Our main motivation of the new transform is its application in image and video coding. Comparing to the popular 8×8 DCT, the 8×16 LiftLT only requires 1 more multiplication, 22 more additions, and 6 more shifting operations. However, image coding examples show that the LiftLT is far superior to the DCT in both objective and subjective coding performance. Thanks to properly designed overlapping basis functions, the LiftLT can completely eliminate annoying blocking artifacts.
Abstract: Disclosed are methods and apparatus for composing and communicating Digital Composition Coded Multisensory Messages (DCC MSMs). The present invention also relates to the design, composition, creation, and communication of the multisensory messages. Multisensory messages, while rich in content and meaning, are to be composable from a great variety of platforms, from cell phones to mainframes.