Abstract: Oxygen depleted wastewater is introduced as a stream into the top of a vessel containing a set of perforated triangular vanes arranged to rotate about a vertical axis. The stream is directed downwardly in the vessel along a path that traverses the path of the rotating vanes so the vanes impact the stream. The force of the impact of the vanes against the stream and the perforations in the vanes cooperate to create a fine droplet mist in the vessel. Atmospheric air drawn into the vessel is mixed and entrained in the mist so that when the mist coalesces, micro-fine size air bubbles are formed. The triangular vanes further provide a pumping action to expel a now aerated stream of wastewater from adjacent the bottom of the vessel.
Abstract: Oxygen depleted wastewater is introduced as a stream into the top of a vessel containing a set of perforated triangular vanes arranged to rotate about a vertical axis. The stream is directed downwardly in the vessel along a path that traverses the path of the rotating vanes so the vanes impact the stream. The force of the impact of the vanes against the stream and the perforations in the vanes cooperate to create a fine droplet mist in the vessel. Atmospheric air drawn into the vessel is mixed and entrained in the mist so that when the mist coalesces, micro-fine size air bubbles are formed. The triangular vanes further provide a pumping action to expel a now aerated stream of wastewater from adjacent the bottom of the vessel.
Abstract: A floating biological contactor confining aerobic bacterial growth media in a container submerged in a wastewater lagoon provides fluid flow for bacteria growth by bubbling fine air bubbles upward through the media from diffusers arranged near the container bottom, which has openings allowing lagoon liquid to rise upward through the media with the air bubbles in a gentle circulational flow. Coarse bubble dispensers, also arranged under the media, deliver coarse bubbles during cleaning cycles for agitating the media to dislodge solid particles that settle downward though the bottom openings in the container.
Abstract: This invention relates to the aeration of relatively large volumes of wastewater using an improved high-capacity aeration system to stimulate enhanced bio-activity. An air delivery system is provided to deliver oxygen to a body of wastewater beneath a large main processing float and a plurality of smaller bio-block floats positioned in proximity to the large main float to sustain biological media submerged beneath the floats. The bio-block floats are positioned relative to the main float so that the treatment capacity of the system can be increased without using additional, more costly, large processing floats. Moreover, the bio-block floats are made smaller relative to the main float so that the system can be easily and inexpensively transported using readily available standard-sized trucks.