Patents Assigned to FEI EFA, Inc.
  • Patent number: 11353479
    Abstract: A pulsed-laser LADA system is provided, which utilizes temporal resolution to enhance spatial resolution. The system is capable of resolving CMOS pairs within the illumination spot using synchronization of laser pulses with the DUT clock. The system can be implemented using laser wavelength having photon energy above the silicon bandgap so as to perform single-photon LADA or wavelength having photon energy below the silicon bandgap so as to generate two-photon LADA. The timing of the laser pulses can be adjusted using two feedback loops tied to the clock signal of an ATE, or by adjusting the ATE's clock signal with reference to a fixed-pulse laser source.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: June 7, 2022
    Assignee: FEI EFA, Inc.
    Inventors: Praveen Vedagarbha, Derryck Reid, Keith Serrels, James S. Vickers
  • Patent number: 11022646
    Abstract: Localizing hot spots in multi layered device under test (DUT) by using lock-in thermography (LIT) where plural hot spots of electrical circuits are buried in the DUT at different depth layers from a bottom layer to a top layer, comprises applying test signals of multiple frequencies to the electrical circuits of the DUT for exciting the hot spots; imaging a top surface of the top layer of the DUT at timed intervals to obtain IR images of the DUT while the test signal is applied to the electrical circuits wherein the images are in correlation to a propagation of heat from the hot spots in the DUT; detecting the thermal response signals at the timed intervals from the images taken from the DUT; and determining changes in the appearance of hot spot images on the top surface of the DUT in relation to the frequencies of the thermal response signals.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: June 1, 2021
    Assignee: FEI EFA, Inc.
    Inventor: Christian Schmidt
  • Patent number: 10718933
    Abstract: An optics arrangement for a solid immersion lens (SIL) is disclosed. The arrangement enables the SIL to freely tilt. The arrangement includes a SIL having an optical axis extending from an engaging surface and a rear surface of the SIL; a SIL housing having a cavity configured to accept the SIL therein while allowing the SIL to freely tilt within the cavity, wherein the cavity includes a hole positioned such that the optical axis passes there-through, to thereby allow light collected by the SIL to propagate to an objective lens; and, a SIL retainer attached to the SIL housing and configured to prevent the SIL from exiting the cavity.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: July 21, 2020
    Assignee: FEI EFA, Inc.
    Inventors: Jonathan Frank, Prasad Sabbineni
  • Publication number: 20200116782
    Abstract: Localizing hot spots in multi layered device under test (DUT) by using lock-in thermography (LIT) where plural hot spots of electrical circuits are buried in the DUT at different depth layers from a bottom layer to a top layer, comprises applying test signals of multiple frequencies to the electrical circuits of the DUT for exciting the hot spots; imaging a top surface of the top layer of the DUT at timed intervals to obtain IR images of the DUT while the test signal is applied to the electrical circuits wherein the images are in correlation to a propagation of heat from the hot spots in the DUT; detecting the thermal response signals at the timed intervals from the images taken from the DUT; and determining changes in the appearance of hot spot images on the top surface of the DUT in relation to the frequencies of the thermal response signals.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Applicant: FEI EFA, Inc.
    Inventor: Christian Schmidt
  • Patent number: 10620263
    Abstract: An apparatus and method for optical probing of a DUT is disclosed. The system enables identifying, localizing and classifying faulty devices within the DUT. A selected area of the DUT is imaged while the DUT is receiving test signals, which may be static or dynamic, i.e., causing certain of the active devices to modulate. Light from the DUT is collected and is passed through a rotatable diffracting element prior to imaging it by a sensor and converting it into an electrical signal. The resulting image changes depending on the rotational positioning of the grating. The diffracted image is inspected to identify, localize and classify faulty devices within the DUT.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: April 14, 2020
    Assignee: FEI EFA, Inc.
    Inventors: Herve Deslandes, Prasad Sabbineni, Regina Freed
  • Patent number: 10545186
    Abstract: Localizing hot spots in multi layered device under test (DUT) by using lock-in thermography (LIT) where plural hot spots of electrical circuits are buried in the DUT at different depth layers from a bottom layer to a top layer, comprises applying test signals of multiple frequencies to the electrical circuits of the DUT for exciting the hot spots; imaging a top surface of the top layer of the DUT at timed intervals to obtain IR images of the DUT while the test signal is applied to the electrical circuits wherein the images are in correlation to a propagation of heat from the hot spots in the DUT; detecting the thermal response signals at the timed intervals from the images taken from the DUT; and determining changes in the appearance of hot spot images on the top surface of the DUT in relation to the frequencies of the thermal response signals.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: January 28, 2020
    Assignee: FEI EFA, Inc.
    Inventor: Christian Schmidt
  • Publication number: 20200025799
    Abstract: A pulsed-laser LADA system is provided, which utilizes temporal resolution to enhance spatial resolution. The system is capable of resolving CMOS pairs within the illumination spot using synchronization of laser pulses with the DUT clock. The system can be implemented using laser wavelength having photon energy above the silicon bandgap so as to perform single-photon LADA or wavelength having photon energy below the silicon bandgap so as to generate two-photon LADA. The timing of the laser pulses can be adjusted using two feedback loops tied to the clock signal of an ATE, or by adjusting the ATE's clock signal with reference to a fixed-pulse laser source.
    Type: Application
    Filed: January 15, 2019
    Publication date: January 23, 2020
    Applicant: FEI EFA, Inc.
    Inventors: Praveen Vedagarbha, Derryck Reid, Keith Serrels, James S. Vickers
  • Patent number: 10539589
    Abstract: System for performing in-line nanoprobing on semiconductor wafer. A wafer support or vertical wafer positioner is attached to a wafer stage. An SEM column, an optical microscope and a plurality of nanoprobe positioners are all attached to the ceiling. The nanoprobe positioners have one nanoprobe configured for physically contacting selected points on the wafer. A force (or touch) sensor measures contact force applied by the probe to the wafer (or the moment) when the probe physically contacts the wafer. A plurality of drift sensors are provided for calculating probe vs. wafer alignment drift in real-time during measurements.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: January 21, 2020
    Assignee: FEI EFA, Inc.
    Inventors: Vladimir Ukraintsev, Israel Niv, Ronen Benzion
  • Patent number: 10209274
    Abstract: A pulsed-laser LADA system is provided, which utilizes temporal resolution to enhance spatial resolution. The system is capable of resolving CMOS pairs within the illumination spot using synchronization of laser pulses with the DUT clock. The system can be implemented using laser wavelength having photon energy above the silicon bandgap so as to perform single-photon LADA or wavelength having photon energy below the silicon bandgap so as to generate two-photon LADA. The timing of the laser pulses can be adjusted using two feedback loops tied to the clock signal of an ATE, or by adjusting the ATE's clock signal with reference to a fixed-pulse laser source.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: February 19, 2019
    Assignee: FEI EFA, Inc.
    Inventors: Praveen Vedagarbha, Derryck Reid, Keith Serrels, James S. Vickers
  • Patent number: 10133051
    Abstract: An optics arrangement for a solid immersion lens (SIL) is disclosed. The arrangement enables the SIL to freely tilt. The arrangement includes a SIL having an optical axis extending from an engaging surface and a rear surface of the SIL; a SIL housing having a cavity configured to accept the SIL therein while allowing the SIL to freely tilt within the cavity, wherein the cavity includes a hole positioned such that the optical axis passes there-through, to thereby allow light collected by the SIL to propagate to an objective lens; and, a SIL retainer attached to the SIL housing and configured to prevent the SIL from exiting the cavity.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: November 20, 2018
    Assignee: FEI EFA, Inc.
    Inventors: Jonathan Frank, Prasad Sabbineni
  • Publication number: 20180328985
    Abstract: An apparatus and method for optical probing of a DUT is disclosed. The system enables identifying, localizing and classifying faulty devices within the DUT. A selected area of the DUT is imaged while the DUT is receiving test signals, which may be static or dynamic, i.e., causing certain of the active devices to modulate. Light from the DUT is collected and is passed through a rotatable diffracting element prior to imaging it by a sensor and converting it into an electrical signal. The resulting image changes depending on the rotational positioning of the grating. The diffracted image is inspected to identify, localize and classify faulty devices within the DUT.
    Type: Application
    Filed: July 3, 2018
    Publication date: November 15, 2018
    Applicant: FEI EFA, Inc.
    Inventors: Herve Deslandes, Prasad Sabbineni, Regina Freed
  • Patent number: 10126360
    Abstract: An apparatus and method for laser voltage testing of a DUT is disclosed. The system enables laser voltage probing and laser voltage imaging of devices within the DUT. A selected area of the DUT is illuminating a while the DUT is receiving test signals causing certain of the active devices to modulate. Light reflected from the DUT is collected and is converted into an electrical signal. The electrical signal is sampled by an ADC and the output of the ADC is sent to an FPGA. The FPGA operates on the signal so as to provide an output that emulates a spectrum analyzer or a vector analyzer.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: November 13, 2018
    Assignee: FEI EFA, Inc.
    Inventor: James S. Vickers
  • Patent number: 10041997
    Abstract: An apparatus and method for optical probing of a DUT is disclosed. The system enables identifying, localizing and classifying faulty devices within the DUT. A selected area of the DUT is imaged while the DUT is receiving test signals, which may be static or dynamic, i.e., causing certain of the active devices to modulate. Light from the DUT is collected and is passed through a rotatable diffracting element prior to imaging it by a sensor and converting it into an electrical signal. The resulting image changes depending on the rotational positioning of the grating. The diffracted image is inspected to identify, localize and classify faulty devices within the DUT.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: August 7, 2018
    Assignee: FEI EFA, Inc.
    Inventors: Herve Deslandes, Prasad Sabbineni, Regina Freed
  • Patent number: 9915700
    Abstract: Probing an integrated circuit (IC), by: electrically applying stimulation signal to said IC; scanning a selected area of said IC with a monochromatic beam; collecting beam reflection from the selected area of said IC, wherein the beam reflection correspond to modulation of the monochromatic beam by active devices of said IC; converting said beam reflection to an electrical probing signal; selecting a frequency or a band of frequencies of said probing signal; utilizing the probing signal to generate a spatial modulation map for various locations over the selected area of said IC; and displaying the spatial map on a monitor, wherein grey scale values correspond to modulation signal values.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: March 13, 2018
    Assignee: FEI EFA, Inc.
    Inventor: Steven Kasapi
  • Patent number: 9903824
    Abstract: An apparatus and method for optical probing of a DUT is disclosed. The system enables identifying, localizing and classifying faulty devices within the DUT. A selected area of the DUT is imaged while the DUT is receiving test signals, which may be static or dynamic, i.e., causing certain of the active devices to modulate. Light from the DUT is collected and is passed through a transparent diffracting grating prior to imaging it by a sensor and converting it into an electrical signal. The resulting image includes the zero order and first order diffraction of the grating. The grating is configured such that the zero order is in registration with emission sites imaged when the grating is outside the optical path.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: February 27, 2018
    Assignee: FEI EFA, Inc.
    Inventors: Herve Deslandes, Antoine Reverdy, Thierry Parrassin
  • Patent number: 9905014
    Abstract: The invention provides a method for a non-destructive, non-contacting and image forming examination of a sample by means of heat flow thermography.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: February 27, 2018
    Assignee: FEI EFA, Inc.
    Inventors: Hans Heissenstein, Peter Stolz, Raiko Meinhardt-Wildegger
  • Patent number: 9891280
    Abstract: A method for testing an integrated circuit (IC) using a nanoprobe, by using a scanning electron microscope (SEM) to register the nanoprobe to an identified feature on the IC; navigating the nanoprobe to a region of interest; scanning the nanoprobe over the surface of the IC while reading data from the nanoprobe; when the data from the nanoprobe indicates that the nanoprobe traverse a feature of interest, decelerating the scanning speed of the nanoprobe and performing testing of the IC. The scanning can be done at a prescribed nanoprobe tip force, and during the step of decelerating the scanning speed, the method further includes increasing the nanoprobe tip force.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: February 13, 2018
    Assignee: FEI EFA, Inc.
    Inventors: Vladimir A. Ukraintsev, Richard Stallcup, Sergiy Pryadkin, Mike Berkmyre, John Sanders
  • Patent number: 9885878
    Abstract: A system and method for obtaining super-resolution image of an object. An illumination beam is directed through an optical axis onto the object to be imaged. Paraxial rays of the illumination beam are deflected away from the optical axis and into a beam dump. The non-paraxial rays are collected after being reflected by the object so as to generate an image only from the non-paraxial rays.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: February 6, 2018
    Assignee: FEI EFA, Inc.
    Inventor: Keith Serrels
  • Patent number: 9869696
    Abstract: Using a local-potential-driving probe drives a conductor to a known potential while adjacent lines are grounded through the sample body reduces electrostatic scanning microscope signal from adjacent lines, allows imaging of metal lines deeper in the sample. Providing different potentials locally on different conductive lines using multiple local-potential-driving probes allows different conductors to be highlighted in the same image, for example, by changing the phase of the signal being applied to the different local-potential-driving probes.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: January 16, 2018
    Assignee: FEI EFA, INC.
    Inventors: Andrew Norman Erickson, Stephen Bradley Ippolito, Sean Zumwalt
  • Patent number: 9816866
    Abstract: The invention provides a method for a non-destructive, non-contacting and image forming examination of a sample by means of the heat flow thermography method where the examination consists of evaluating an existence and/or depth distance values of any heat flow velocity transitions below a surface of the sample, wherein the sample is excited by heat pulses of at least one excitation source, and a thermal flow originating therefrom is captured by at least one infrared sensor in an image sequence of thermal images, and wherein the thermal images obtained from the image sequence are evaluated by means of a signal and image processing and depicting a thermal flow with a resolution in time and in space.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: November 14, 2017
    Assignee: FEI EFA, Inc.
    Inventors: Haymo Lang, Jochen Mielke