Abstract: The invention relates to a ceramic particle mixture containing, as components, a predominant portion by weight of frittable particles made of a ceramic material and particles of at least one additive, at least one additive being a dispersed absorbent solid inorganic material which has, for a laser beam emitted at a predetermined wavelength, a specific absorptivity that is greater than the absorptivity of the other components of the ceramic mixture, and which drastically breaks down when gas is emitted in the presence of the laser beam, said additive being present in proportions of less than 5% of the dry weight. The invention also relates to ceramic parts produced from such a mixture.
Type:
Grant
Filed:
May 31, 2012
Date of Patent:
August 25, 2015
Assignee:
FIB-Service Intellectual, S.A.
Inventors:
Fabrice Petit, Véronique Lardot, Cédric Ott, Enrique Juste, Francis Cambier
Abstract: Dry mix for treating refractory substrates, comprising combustible particles of at least one oxidizable substance which, in the presence of oxygen, gives rise to an exothermic reaction, and particles of at least one other substance, wherein these particles form together, during said exothermic reaction, a coherent mass capable of adhering to and/or interacting with the treated substrate, characterized in that it comprises, as particles of at least one other substance, particles of at least one expanding substance, in that the dry mix without the particles of this at least one expanding substance has a first bulk density and in that the mix comprising said at least one expanding substance has a second bulk density lower than said first bulk density.
Abstract: Method of spraying a pulverulent material into a carrier gas, comprising the acceleration of the carrier gas under pressure up to a sonic velocity before an expansion enabling the pulverulent material to be entrained, with formation of a constant stream of carrier gas entraining an adjustable predetermined amount of pulverulent materials, and safety device for spraying pulverulent material into a carrier gas.