Patents Assigned to Fibersense Technology Corporation
  • Patent number: 6870628
    Abstract: A method of aligning an optical fiber to an integrated optical circuit includes positioning the optical fiber at a first workstation such that a fast axis of the optical fiber is oriented at a first angular position, and securing the optical fiber to a glass block in that position. Then, positioning the integrated optical circuit at a second workstation such that a fast axis of the integrated optical circuit is oriented at the first angular position, and positioning the glass block and optical fiber at the second workstation with the optical fiber adjacent to the integrated optical circuit, so that the fast axis of the optical fiber is oriented at the first angular position. The free end of the optical fiber is illuminated, and the fiber is rotated until the integrated optical circuit detects a maximum throughput across the interface between the optical fiber and the integrated optical circuit.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: March 22, 2005
    Assignee: Fibersense Technology Corporation
    Inventors: Alfred Healy, Donald Scott Gage
  • Patent number: 6859471
    Abstract: A method of stabilizing output characteristics of an SLD device with respect to ambient temperature is disclosed. The SLD device includes a cooling module for cooling an SLD chip, and a sensor for providing a set point signal corresponding to a set point temperature. The cooling module and the sensor, together with control electronics, form a feedback loop for maintaining the set point temperature within a predetermined range. The method comprises determining a variation of the output characteristics as a function of ambient temperature, and determining a variation of the set point signal as a function of ambient temperature, wherein the variation of the set point signal corresponds to the variation of the output characteristics. The method also includes modifying the feedback loop so as to offset the variation of the set point signal, and thereby stabilize the variation of the output characteristics as a function of ambient temperature.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: February 22, 2005
    Assignee: Fibersense Technology Corporation
    Inventors: Peter Gregory, Alfred Healy
  • Patent number: 6640189
    Abstract: A method of reacquiring a satellite signal within an integrated GP/IG navigation system includes detecting a loss of synchronization between a timing code in the satellite signal and a corresponding reference timing code. The method includes receiving position data from an inertial guidance unit. The position data is representative of an estimated position (and its associated uncertainty) of the navigation system. The method also includes estimating a distance from the navigation system to the satellite, as a function of the position data, and deriving an initial delay from the distance. The method includes delaying the reference timing code, with respect to the timing code embedded in the satellite signal, by an offset delay substantially equal to the initial delay. The method includes incrementally varying the offset delay until the timing code embedded in the satellite signal is synchronized with the reference timing code, or until the offset delay equals a predetermined end limit value.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: October 28, 2003
    Assignee: Fibersense Technology Corporation
    Inventors: Michael S. Perlmutter, Ian Humphrey
  • Patent number: 6622091
    Abstract: A method of calibrating acceleration data signals from a set of accelerometers, and angular rate data signals from a set of gyroscopes within a combined GPS/IGS includes generating navigation data as a function of the acceleration data signals, the angular rate data signals, and prior navigation data. The method further includes combining the navigation data with GPS data via a Kalman filter, so as to produce corrected navigation data, navigation correction data, acceleration correction data and angular rate correction data. The method further includes modifying the acceleration data signals as a function of the acceleration correction data so as to calibrate the acceleration data signals, and modifying the angular rate data signals as a function of the angular rate correction data, so as to calibrate the angular data signals.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: September 16, 2003
    Assignee: Fibersense Technology Corporation
    Inventors: Michael S. Perlmutter, Ian Humphrey
  • Patent number: 6522826
    Abstract: An optical fiber coil assembly includes an optical fiber wound about an axis of rotation. A first section of the fiber, from the intermediate point to the first end, is wound around a bobbin in a first direction about the axis of rotation. A second section of the fiber, from the intermediate point to the second end, is wound, at least partially, around the bobbin in a second direction opposite the first direction. A reversal of the fiber, however, allows an end portion of the second section to be wound around the bobbin in the first direction, along with an end portion of the first section. The coil assembly further includes an epoxy zipper disposed between the first and second sections of the fiber, forming a fiber lead pair. An epoxy bridge disposed between the fiber lead pair and the bobbin secures the fiber lead pair to the bobbin.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: February 18, 2003
    Assignee: Fibersense Technology Corporation
    Inventor: Peter Gregory